On higher nil groups of group rings
Homology, homotopy, and applications, Tome 9 (2007) no. 2, pp. 95-100.

Voir la notice de l'article provenant de la source International Press of Boston

Let $G$ be a finite group and $\mathbb{Z} [G]$ its integral group ring. We prove that the nil groups $N^j K_2(\mathbb{Z} [G])$ do not vanish for all $j\geq 1$ and for a large class of finite groups. We obtain from this that the iterated nil groups $N^j K_i(\mathbb{Z} [G])$ are also nonzero for all $i\geq 2, j\geq i-1$.
DOI : 10.4310/HHA.2007.v9.n2.a3
Classification : 19A31, 19C99, 19D35
Keywords: $K$-theory, nil groups
@article{HHA_2007_9_2_a3,
     author = {Daniel Juan-Pineda},
     title = {On higher nil groups of group rings},
     journal = {Homology, homotopy, and applications},
     pages = {95--100},
     publisher = {mathdoc},
     volume = {9},
     number = {2},
     year = {2007},
     doi = {10.4310/HHA.2007.v9.n2.a3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2007.v9.n2.a3/}
}
TY  - JOUR
AU  - Daniel Juan-Pineda
TI  - On higher nil groups of group rings
JO  - Homology, homotopy, and applications
PY  - 2007
SP  - 95
EP  - 100
VL  - 9
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2007.v9.n2.a3/
DO  - 10.4310/HHA.2007.v9.n2.a3
LA  - en
ID  - HHA_2007_9_2_a3
ER  - 
%0 Journal Article
%A Daniel Juan-Pineda
%T On higher nil groups of group rings
%J Homology, homotopy, and applications
%D 2007
%P 95-100
%V 9
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2007.v9.n2.a3/
%R 10.4310/HHA.2007.v9.n2.a3
%G en
%F HHA_2007_9_2_a3
Daniel Juan-Pineda. On higher nil groups of group rings. Homology, homotopy, and applications, Tome 9 (2007) no. 2, pp. 95-100. doi : 10.4310/HHA.2007.v9.n2.a3. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2007.v9.n2.a3/

Cité par Sources :