Braid cobordisms, triangulated categories, and flag varieties
Homology, homotopy, and applications, Tome 9 (2007) no. 2, pp. 19-94.

Voir la notice de l'article provenant de la source International Press of Boston

We argue that various braid group actions on triangulated categories should be extended to projective actions of the category of braid cobordisms and illustrate how this works in examples. We construct actions of both the affine braid group and the braid cobordism category on the derived category of coherent sheaves on the cotangent bundle to the full flag variety.
DOI : 10.4310/HHA.2007.v9.n2.a2
Classification : 18E30
Keywords: derived categories, triangulated categories, braid group actions, braid cobordisms, categorification, flag varieties, Fukaya categories, mirror symmetry
@article{HHA_2007_9_2_a2,
     author = {Mikhail Khovanov and Richard Thomas},
     title = {Braid cobordisms, triangulated categories, and flag varieties},
     journal = {Homology, homotopy, and applications},
     pages = {19--94},
     publisher = {mathdoc},
     volume = {9},
     number = {2},
     year = {2007},
     doi = {10.4310/HHA.2007.v9.n2.a2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2007.v9.n2.a2/}
}
TY  - JOUR
AU  - Mikhail Khovanov
AU  - Richard Thomas
TI  - Braid cobordisms, triangulated categories, and flag varieties
JO  - Homology, homotopy, and applications
PY  - 2007
SP  - 19
EP  - 94
VL  - 9
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2007.v9.n2.a2/
DO  - 10.4310/HHA.2007.v9.n2.a2
LA  - en
ID  - HHA_2007_9_2_a2
ER  - 
%0 Journal Article
%A Mikhail Khovanov
%A Richard Thomas
%T Braid cobordisms, triangulated categories, and flag varieties
%J Homology, homotopy, and applications
%D 2007
%P 19-94
%V 9
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2007.v9.n2.a2/
%R 10.4310/HHA.2007.v9.n2.a2
%G en
%F HHA_2007_9_2_a2
Mikhail Khovanov; Richard Thomas. Braid cobordisms, triangulated categories, and flag varieties. Homology, homotopy, and applications, Tome 9 (2007) no. 2, pp. 19-94. doi : 10.4310/HHA.2007.v9.n2.a2. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2007.v9.n2.a2/

Cité par Sources :