Homotopy types of truncated projective resolutions
Homology, homotopy, and applications, Tome 9 (2007) no. 2, pp. 445-449.

Voir la notice de l'article provenant de la source International Press of Boston

We work over an arbitrary ring $R$. Given two truncated projective resolutions of equal length for the same module, we consider their underlying chain complexes. We show they may be stabilized by projective modules to obtain a pair of complexes of the same homotopy type.
DOI : 10.4310/HHA.2007.v9.n2.a16
Classification : 16E05
Keywords: projective resolution, homotopy type
@article{HHA_2007_9_2_a16,
     author = {W. H. Mannan},
     title = {Homotopy types of truncated projective resolutions},
     journal = {Homology, homotopy, and applications},
     pages = {445--449},
     publisher = {mathdoc},
     volume = {9},
     number = {2},
     year = {2007},
     doi = {10.4310/HHA.2007.v9.n2.a16},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2007.v9.n2.a16/}
}
TY  - JOUR
AU  - W. H. Mannan
TI  - Homotopy types of truncated projective resolutions
JO  - Homology, homotopy, and applications
PY  - 2007
SP  - 445
EP  - 449
VL  - 9
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2007.v9.n2.a16/
DO  - 10.4310/HHA.2007.v9.n2.a16
LA  - en
ID  - HHA_2007_9_2_a16
ER  - 
%0 Journal Article
%A W. H. Mannan
%T Homotopy types of truncated projective resolutions
%J Homology, homotopy, and applications
%D 2007
%P 445-449
%V 9
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2007.v9.n2.a16/
%R 10.4310/HHA.2007.v9.n2.a16
%G en
%F HHA_2007_9_2_a16
W. H. Mannan. Homotopy types of truncated projective resolutions. Homology, homotopy, and applications, Tome 9 (2007) no. 2, pp. 445-449. doi : 10.4310/HHA.2007.v9.n2.a16. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2007.v9.n2.a16/

Cité par Sources :