Model structure on operads in orthogonal spectra
Homology, homotopy, and applications, Tome 9 (2007) no. 2, pp. 397-412.

Voir la notice de l'article provenant de la source International Press of Boston

We generalize Berger and Moerdijk’s results on axiomatic homotopy theory for operads to the setting of enriched symmetric monoidal model categories, and show how this theory applies to orthogonal spectra. In particular, we provide a symmetric fibrant replacement functor for the positive stable model structure.
DOI : 10.4310/HHA.2007.v9.n2.a14
Classification : 18D50, 55P42, 55U35
Keywords: model category, operads, orthogonal spectra
@article{HHA_2007_9_2_a14,
     author = {Tore August Kro},
     title = {Model structure on operads in orthogonal spectra},
     journal = {Homology, homotopy, and applications},
     pages = {397--412},
     publisher = {mathdoc},
     volume = {9},
     number = {2},
     year = {2007},
     doi = {10.4310/HHA.2007.v9.n2.a14},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2007.v9.n2.a14/}
}
TY  - JOUR
AU  - Tore August Kro
TI  - Model structure on operads in orthogonal spectra
JO  - Homology, homotopy, and applications
PY  - 2007
SP  - 397
EP  - 412
VL  - 9
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2007.v9.n2.a14/
DO  - 10.4310/HHA.2007.v9.n2.a14
LA  - en
ID  - HHA_2007_9_2_a14
ER  - 
%0 Journal Article
%A Tore August Kro
%T Model structure on operads in orthogonal spectra
%J Homology, homotopy, and applications
%D 2007
%P 397-412
%V 9
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2007.v9.n2.a14/
%R 10.4310/HHA.2007.v9.n2.a14
%G en
%F HHA_2007_9_2_a14
Tore August Kro. Model structure on operads in orthogonal spectra. Homology, homotopy, and applications, Tome 9 (2007) no. 2, pp. 397-412. doi : 10.4310/HHA.2007.v9.n2.a14. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2007.v9.n2.a14/

Cité par Sources :