A statistical approach to persistent homology
Homology, homotopy, and applications, Tome 9 (2007) no. 2, pp. 337-362.

Voir la notice de l'article provenant de la source International Press of Boston

Assume that a finite set of points is randomly sampled from a subspace of a metric space. Recent advances in computational topology have provided several approaches to recovering the geometric and topological properties of the underlying space. In this paper we take a statistical approach to this problem. We assume that the data is randomly sampled from an unknown probability distribution. We define two filtered complexes with which we can calculate the persistent homology of a probability distribution. Using statistical estimators for samples from certain families of distributions, we show that we can recover the persistent homology of the underlying distribution.
DOI : 10.4310/HHA.2007.v9.n2.a12
Classification : 55Nxx, 62H11
Keywords: persistent homology, point cloud data, directional statistics, parametric statistics, expected persistent homology
@article{HHA_2007_9_2_a12,
     author = {Peter Bubenik and Peter T. Kim},
     title = {A statistical approach to persistent homology},
     journal = {Homology, homotopy, and applications},
     pages = {337--362},
     publisher = {mathdoc},
     volume = {9},
     number = {2},
     year = {2007},
     doi = {10.4310/HHA.2007.v9.n2.a12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2007.v9.n2.a12/}
}
TY  - JOUR
AU  - Peter Bubenik
AU  - Peter T. Kim
TI  - A statistical approach to persistent homology
JO  - Homology, homotopy, and applications
PY  - 2007
SP  - 337
EP  - 362
VL  - 9
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2007.v9.n2.a12/
DO  - 10.4310/HHA.2007.v9.n2.a12
LA  - en
ID  - HHA_2007_9_2_a12
ER  - 
%0 Journal Article
%A Peter Bubenik
%A Peter T. Kim
%T A statistical approach to persistent homology
%J Homology, homotopy, and applications
%D 2007
%P 337-362
%V 9
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2007.v9.n2.a12/
%R 10.4310/HHA.2007.v9.n2.a12
%G en
%F HHA_2007_9_2_a12
Peter Bubenik; Peter T. Kim. A statistical approach to persistent homology. Homology, homotopy, and applications, Tome 9 (2007) no. 2, pp. 337-362. doi : 10.4310/HHA.2007.v9.n2.a12. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2007.v9.n2.a12/

Cité par Sources :