A cohomological interpretation of Brion’s formula
Homology, homotopy, and applications, Tome 9 (2007) no. 2, pp. 321-336.

Voir la notice de l'article provenant de la source International Press of Boston

A subset $P$ of $\mathbb{R}^n$ gives rise to a formal Laurent series with monomials corresponding to lattice points in $P$. Under suitable hypotheses, this series represents a rational function $R(P)$; this happens, for example, when $P$ is bounded in which case $R(P)$ is a Laurent polynomial. Michel Brion has discovered a surprising formula relating the Laurent polynomial $R(P)$ of a lattice polytope $P$ to the sum of rational functions corresponding to the supporting cones subtended at the vertices of $P$. The result is re-phrased and generalised in the language of cohomology of line bundles on complete toric varieties. Brion’s formula is the special case of an ample line bundle on a projective toric variety. The paper also contains some general remarks on the cohomology of torus-equivariant line bundles on complete toric varieties, valid over arbitrary commutative ground rings.
DOI : 10.4310/HHA.2007.v9.n2.a11
Classification : 05A19, 14M25, 52B20
Keywords: polytope, cone, lattice point enumerator, toric variety, line bundle, Čech cohomology
@article{HHA_2007_9_2_a11,
     author = {Thomas H\"uttermann},
     title = {A cohomological interpretation of {Brion{\textquoteright}s} formula},
     journal = {Homology, homotopy, and applications},
     pages = {321--336},
     publisher = {mathdoc},
     volume = {9},
     number = {2},
     year = {2007},
     doi = {10.4310/HHA.2007.v9.n2.a11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2007.v9.n2.a11/}
}
TY  - JOUR
AU  - Thomas Hüttermann
TI  - A cohomological interpretation of Brion’s formula
JO  - Homology, homotopy, and applications
PY  - 2007
SP  - 321
EP  - 336
VL  - 9
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2007.v9.n2.a11/
DO  - 10.4310/HHA.2007.v9.n2.a11
LA  - en
ID  - HHA_2007_9_2_a11
ER  - 
%0 Journal Article
%A Thomas Hüttermann
%T A cohomological interpretation of Brion’s formula
%J Homology, homotopy, and applications
%D 2007
%P 321-336
%V 9
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2007.v9.n2.a11/
%R 10.4310/HHA.2007.v9.n2.a11
%G en
%F HHA_2007_9_2_a11
Thomas Hüttermann. A cohomological interpretation of Brion’s formula. Homology, homotopy, and applications, Tome 9 (2007) no. 2, pp. 321-336. doi : 10.4310/HHA.2007.v9.n2.a11. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2007.v9.n2.a11/

Cité par Sources :