Heller triangulated categories
Homology, homotopy, and applications, Tome 9 (2007) no. 2, pp. 233-320.

Voir la notice de l'article provenant de la source International Press of Boston

Let ${\cal E}$ be a Frobenius category. Let $\underline{\cal E}$ denote its stable category. The shift functor on $\underline{\cal E}$ induces, by pointwise application, an inner shift functor on the category of acyclic complexes with entries in $\underline{\cal E}$. Shifting a complex by $3$ positions yields an outer shift functor on this category. Passing to quotient modulo split acyclic complexes, Heller remarked that inner and outer shift become isomorphic, via an isomorphism satisfying yet a further compatibility. Moreover, Heller remarked that a choice of such an isomorphism determines a Verdier triangulation on $\underline{\cal E}$, except for the octahedral axiom. We generalise the notion of acyclic complexes such that the accordingly enlarged version of Heller’s construction includes octahedra.
DOI : 10.4310/HHA.2007.v9.n2.a10
Classification : 18E30
Keywords: triangulated category
@article{HHA_2007_9_2_a10,
     author = {Matthias K\"unzer},
     title = {Heller triangulated categories},
     journal = {Homology, homotopy, and applications},
     pages = {233--320},
     publisher = {mathdoc},
     volume = {9},
     number = {2},
     year = {2007},
     doi = {10.4310/HHA.2007.v9.n2.a10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2007.v9.n2.a10/}
}
TY  - JOUR
AU  - Matthias Künzer
TI  - Heller triangulated categories
JO  - Homology, homotopy, and applications
PY  - 2007
SP  - 233
EP  - 320
VL  - 9
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2007.v9.n2.a10/
DO  - 10.4310/HHA.2007.v9.n2.a10
LA  - en
ID  - HHA_2007_9_2_a10
ER  - 
%0 Journal Article
%A Matthias Künzer
%T Heller triangulated categories
%J Homology, homotopy, and applications
%D 2007
%P 233-320
%V 9
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2007.v9.n2.a10/
%R 10.4310/HHA.2007.v9.n2.a10
%G en
%F HHA_2007_9_2_a10
Matthias Künzer. Heller triangulated categories. Homology, homotopy, and applications, Tome 9 (2007) no. 2, pp. 233-320. doi : 10.4310/HHA.2007.v9.n2.a10. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2007.v9.n2.a10/

Cité par Sources :