A class of left ideals of the Steenrod algebra
Homology, homotopy, and applications, Tome 9 (2007) no. 1, pp. 185-191.

Voir la notice de l'article provenant de la source International Press of Boston

We study the nested collection of left ideals of $\mathcal{A}$, the mod 2 Steenrod algebra, $L(k) := \mathcal{A} \{\mathit{Sq}^{2^0}, \mathit{Sq}^{2^1}, \mathit{Sq}^{2^2}, \dots, \mathit{Sq}^{2^k}\}$. We determine the smallest $k$ such that $\mathit{Sq}^n \in L(k)$. We discuss an application which improves upon the results of F. R. Cohen and the first author in their paper comparing the loop of the degree 2 map on a sphere and the H-space squaring map on the loop of a sphere.
DOI : 10.4310/HHA.2007.v9.n1.a7
Classification : 55S10
Keywords: Steenrod algebra, homotopy
@article{HHA_2007_9_1_a7,
     author = {I. Johnson and J. L. Merzel},
     title = {A class of left ideals of the {Steenrod} algebra},
     journal = {Homology, homotopy, and applications},
     pages = {185--191},
     publisher = {mathdoc},
     volume = {9},
     number = {1},
     year = {2007},
     doi = {10.4310/HHA.2007.v9.n1.a7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2007.v9.n1.a7/}
}
TY  - JOUR
AU  - I. Johnson
AU  - J. L. Merzel
TI  - A class of left ideals of the Steenrod algebra
JO  - Homology, homotopy, and applications
PY  - 2007
SP  - 185
EP  - 191
VL  - 9
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2007.v9.n1.a7/
DO  - 10.4310/HHA.2007.v9.n1.a7
LA  - en
ID  - HHA_2007_9_1_a7
ER  - 
%0 Journal Article
%A I. Johnson
%A J. L. Merzel
%T A class of left ideals of the Steenrod algebra
%J Homology, homotopy, and applications
%D 2007
%P 185-191
%V 9
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2007.v9.n1.a7/
%R 10.4310/HHA.2007.v9.n1.a7
%G en
%F HHA_2007_9_1_a7
I. Johnson; J. L. Merzel. A class of left ideals of the Steenrod algebra. Homology, homotopy, and applications, Tome 9 (2007) no. 1, pp. 185-191. doi : 10.4310/HHA.2007.v9.n1.a7. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2007.v9.n1.a7/

Cité par Sources :