Equivariant Morse relations
Homology, homotopy, and applications, Tome 9 (2007) no. 1, pp. 467-483.

Voir la notice de l'article provenant de la source International Press of Boston

For a finite group $G$, Costenoble and Waner defined a cellular (co-)homology theory for $G$-spaces $X$, which is graded on virtual representations of the equivariant fundamental groupoid $π_G(X)$. Using this homology, we associate an infinite (Morse) series with an equivariant Morse function $f$ defined on a closed Riemannian $G$-manifold $M$. Wasserman has shown that when the critical locus of $f$ is a disjoint union of orbits, $M$ has a canonical decomposition into disc bundles. We show that if this decomposition “corresponds” to a virtual representation $γ$ of $π_G(M)$, then the Morse relations are satisfied by the “$γ$th homology groups”. For semi-free $G$-actions, we characterise the Morse functions which naturally give rise to such representations $γ$ of $π_G(M)$. We also show that corresponding to any equivariant Morse function on a $Z_2$-manifold, it is always possible to define virtual representations $γ$ so that the Morse relation is satisfied by the “$γ$th homology groups”. In particular, the Morse relation is satisfied by Bredon homology.
DOI : 10.4310/HHA.2007.v9.n1.a19
Classification : 55N25, 55N91, 57R70, 57R91
Keywords: equivariant Morse function, $RO(π_G(X))$ graded homology, Morse relation
@article{HHA_2007_9_1_a19,
     author = {Mahuya Datta and Neeta Pandey},
     title = {Equivariant {Morse} relations},
     journal = {Homology, homotopy, and applications},
     pages = {467--483},
     publisher = {mathdoc},
     volume = {9},
     number = {1},
     year = {2007},
     doi = {10.4310/HHA.2007.v9.n1.a19},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2007.v9.n1.a19/}
}
TY  - JOUR
AU  - Mahuya Datta
AU  - Neeta Pandey
TI  - Equivariant Morse relations
JO  - Homology, homotopy, and applications
PY  - 2007
SP  - 467
EP  - 483
VL  - 9
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2007.v9.n1.a19/
DO  - 10.4310/HHA.2007.v9.n1.a19
LA  - en
ID  - HHA_2007_9_1_a19
ER  - 
%0 Journal Article
%A Mahuya Datta
%A Neeta Pandey
%T Equivariant Morse relations
%J Homology, homotopy, and applications
%D 2007
%P 467-483
%V 9
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2007.v9.n1.a19/
%R 10.4310/HHA.2007.v9.n1.a19
%G en
%F HHA_2007_9_1_a19
Mahuya Datta; Neeta Pandey. Equivariant Morse relations. Homology, homotopy, and applications, Tome 9 (2007) no. 1, pp. 467-483. doi : 10.4310/HHA.2007.v9.n1.a19. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2007.v9.n1.a19/

Cité par Sources :