Model structures on pro-categories
Homology, homotopy, and applications, Tome 9 (2007) no. 1, pp. 367-398.

Voir la notice de l'article provenant de la source International Press of Boston

We introduce a notion of a filtered model structure and use this notion to produce various model structures on procategories. We give several examples, including a homotopy theory for $G$-spaces, where $G$ is a profinite group. The class of weak equivalences are an approximation to the class of underlying weak equivalences.
DOI : 10.4310/HHA.2007.v9.n1.a15
Classification : 55U35, 18G55, 55P91
Keywords: model category, pro-category
@article{HHA_2007_9_1_a15,
     author = {Halvard Fausk and Daniel C. Isaksen},
     title = {Model structures on pro-categories},
     journal = {Homology, homotopy, and applications},
     pages = {367--398},
     publisher = {mathdoc},
     volume = {9},
     number = {1},
     year = {2007},
     doi = {10.4310/HHA.2007.v9.n1.a15},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2007.v9.n1.a15/}
}
TY  - JOUR
AU  - Halvard Fausk
AU  - Daniel C. Isaksen
TI  - Model structures on pro-categories
JO  - Homology, homotopy, and applications
PY  - 2007
SP  - 367
EP  - 398
VL  - 9
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2007.v9.n1.a15/
DO  - 10.4310/HHA.2007.v9.n1.a15
LA  - en
ID  - HHA_2007_9_1_a15
ER  - 
%0 Journal Article
%A Halvard Fausk
%A Daniel C. Isaksen
%T Model structures on pro-categories
%J Homology, homotopy, and applications
%D 2007
%P 367-398
%V 9
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2007.v9.n1.a15/
%R 10.4310/HHA.2007.v9.n1.a15
%G en
%F HHA_2007_9_1_a15
Halvard Fausk; Daniel C. Isaksen. Model structures on pro-categories. Homology, homotopy, and applications, Tome 9 (2007) no. 1, pp. 367-398. doi : 10.4310/HHA.2007.v9.n1.a15. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2007.v9.n1.a15/

Cité par Sources :