Compactly generated homotopy categories
Homology, homotopy, and applications, Tome 9 (2007) no. 1, pp. 257-274.

Voir la notice de l'article provenant de la source International Press of Boston

Over an associative ring we consider a class $\mathbb{X}$ of left modules which is closed under set-indexed coproducts and direct summands. We investigate when the triangulated homotopy category $K(\mathbb{X})$ is compactly generated, and give a number of examples.
DOI : 10.4310/HHA.2007.v9.n1.a11
Classification : 16D20, 16D40, 16D50, 16D90, 16E05
Keywords: compactly generated category, compact object, homotopy category, pure exact sequence, triangulated category
@article{HHA_2007_9_1_a11,
     author = {Henrik Holm and Peter J{\o}rgensen},
     title = {Compactly generated homotopy categories},
     journal = {Homology, homotopy, and applications},
     pages = {257--274},
     publisher = {mathdoc},
     volume = {9},
     number = {1},
     year = {2007},
     doi = {10.4310/HHA.2007.v9.n1.a11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2007.v9.n1.a11/}
}
TY  - JOUR
AU  - Henrik Holm
AU  - Peter Jørgensen
TI  - Compactly generated homotopy categories
JO  - Homology, homotopy, and applications
PY  - 2007
SP  - 257
EP  - 274
VL  - 9
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2007.v9.n1.a11/
DO  - 10.4310/HHA.2007.v9.n1.a11
LA  - en
ID  - HHA_2007_9_1_a11
ER  - 
%0 Journal Article
%A Henrik Holm
%A Peter Jørgensen
%T Compactly generated homotopy categories
%J Homology, homotopy, and applications
%D 2007
%P 257-274
%V 9
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2007.v9.n1.a11/
%R 10.4310/HHA.2007.v9.n1.a11
%G en
%F HHA_2007_9_1_a11
Henrik Holm; Peter Jørgensen. Compactly generated homotopy categories. Homology, homotopy, and applications, Tome 9 (2007) no. 1, pp. 257-274. doi : 10.4310/HHA.2007.v9.n1.a11. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2007.v9.n1.a11/

Cité par Sources :