A construction of quotient $A_{\infty}$-categories
Homology, homotopy, and applications, Tome 8 (2006) no. 2, pp. 157-203.

Voir la notice de l'article provenant de la source International Press of Boston

We construct an $A_\infty$-category ${\mathsf D}({\mathcal C}|{\mathcal B})$ from a given $A_\infty$-category ${\mathcal C}$ and its full subcategory ${\mathcal B}$. The construction is similar to a particular case of Drinfeld's construction of the quotient of differential graded categories. We use ${\mathsf D}({\mathcal C}|{\mathcal B})$ to construct an $A_\infty$-functor of K-injective resolutions of a complex, when the ground ring is a field. The conventional derived category is obtained as the 0-th cohomology of the quotient of the differential graded category of complexes over acyclic complexes. This result follows also from Drinfeld's theory of quotients of differential graded categories.
DOI : 10.4310/HHA.2006.v8.n2.a9
Classification : 16E45, 18G10, 18G55, 57T30
Keywords: $A_{\infty}$-category, $A_{\infty}$-functor, $A_{\infty}$-transformation, $K$-injective resolution, quotient $A_{\infty}$-category
@article{HHA_2006_8_2_a9,
     author = {Volodymyr Lyubashenko and Sergiy Ovisienko},
     title = {A construction of quotient $A_{\infty}$-categories},
     journal = {Homology, homotopy, and applications},
     pages = {157--203},
     publisher = {mathdoc},
     volume = {8},
     number = {2},
     year = {2006},
     doi = {10.4310/HHA.2006.v8.n2.a9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2006.v8.n2.a9/}
}
TY  - JOUR
AU  - Volodymyr Lyubashenko
AU  - Sergiy Ovisienko
TI  - A construction of quotient $A_{\infty}$-categories
JO  - Homology, homotopy, and applications
PY  - 2006
SP  - 157
EP  - 203
VL  - 8
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2006.v8.n2.a9/
DO  - 10.4310/HHA.2006.v8.n2.a9
LA  - en
ID  - HHA_2006_8_2_a9
ER  - 
%0 Journal Article
%A Volodymyr Lyubashenko
%A Sergiy Ovisienko
%T A construction of quotient $A_{\infty}$-categories
%J Homology, homotopy, and applications
%D 2006
%P 157-203
%V 8
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2006.v8.n2.a9/
%R 10.4310/HHA.2006.v8.n2.a9
%G en
%F HHA_2006_8_2_a9
Volodymyr Lyubashenko; Sergiy Ovisienko. A construction of quotient $A_{\infty}$-categories. Homology, homotopy, and applications, Tome 8 (2006) no. 2, pp. 157-203. doi : 10.4310/HHA.2006.v8.n2.a9. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2006.v8.n2.a9/

Cité par Sources :