The eta invariant and the “twisted” connective $K$-theory of the classifying space for cyclic 2-groups
Homology, homotopy, and applications, Tome 8 (2006) no. 2, pp. 105-114.

Voir la notice de l'article provenant de la source International Press of Boston

Let $\ell=2^\nu\ge2$. We use the eta invariant to study the “twisted” connective real $K$-theory groups $ko_m(B\mathbb{Z}_\ell,\xi_1)$ of the classifying space $B\mathbb{Z}_\ell$ for the cyclic group $\mathbb{Z}_\ell$.
DOI : 10.4310/HHA.2006.v8.n2.a6
Classification : 55N15
Keywords: connective $K$-theory, eta invariant
@article{HHA_2006_8_2_a6,
     author = {Egidio Barrera-Yanez},
     title = {The eta invariant and the {\textquotedblleft}twisted{\textquotedblright} connective $K$-theory of the classifying space for cyclic 2-groups},
     journal = {Homology, homotopy, and applications},
     pages = {105--114},
     publisher = {mathdoc},
     volume = {8},
     number = {2},
     year = {2006},
     doi = {10.4310/HHA.2006.v8.n2.a6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2006.v8.n2.a6/}
}
TY  - JOUR
AU  - Egidio Barrera-Yanez
TI  - The eta invariant and the “twisted” connective $K$-theory of the classifying space for cyclic 2-groups
JO  - Homology, homotopy, and applications
PY  - 2006
SP  - 105
EP  - 114
VL  - 8
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2006.v8.n2.a6/
DO  - 10.4310/HHA.2006.v8.n2.a6
LA  - en
ID  - HHA_2006_8_2_a6
ER  - 
%0 Journal Article
%A Egidio Barrera-Yanez
%T The eta invariant and the “twisted” connective $K$-theory of the classifying space for cyclic 2-groups
%J Homology, homotopy, and applications
%D 2006
%P 105-114
%V 8
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2006.v8.n2.a6/
%R 10.4310/HHA.2006.v8.n2.a6
%G en
%F HHA_2006_8_2_a6
Egidio Barrera-Yanez. The eta invariant and the “twisted” connective $K$-theory of the classifying space for cyclic 2-groups. Homology, homotopy, and applications, Tome 8 (2006) no. 2, pp. 105-114. doi : 10.4310/HHA.2006.v8.n2.a6. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2006.v8.n2.a6/

Cité par Sources :