Homotopy invariance in E-theory
Homology, homotopy, and applications, Tome 8 (2006) no. 2, pp. 29-49.

Voir la notice de l'article provenant de la source International Press of Boston

We introduce equivalence relations among asymptotic homomorphisms that in general are stronger than homotopy, but which we show are equivalent to homotopy when the domain is a suspended $C*$-algebra. As an application, we show that the $E$-theory of Connes and Higson can be realized as a special case of Kasparov’s KK-theory.
DOI : 10.4310/HHA.2006.v8.n2.a2
Classification : 19K35, 46L85
Keywords: $E$-theory, asymptotic homomorphisms
@article{HHA_2006_8_2_a2,
     author = {Klaus Thomsen},
     title = {Homotopy invariance in {E-theory}},
     journal = {Homology, homotopy, and applications},
     pages = {29--49},
     publisher = {mathdoc},
     volume = {8},
     number = {2},
     year = {2006},
     doi = {10.4310/HHA.2006.v8.n2.a2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2006.v8.n2.a2/}
}
TY  - JOUR
AU  - Klaus Thomsen
TI  - Homotopy invariance in E-theory
JO  - Homology, homotopy, and applications
PY  - 2006
SP  - 29
EP  - 49
VL  - 8
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2006.v8.n2.a2/
DO  - 10.4310/HHA.2006.v8.n2.a2
LA  - en
ID  - HHA_2006_8_2_a2
ER  - 
%0 Journal Article
%A Klaus Thomsen
%T Homotopy invariance in E-theory
%J Homology, homotopy, and applications
%D 2006
%P 29-49
%V 8
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2006.v8.n2.a2/
%R 10.4310/HHA.2006.v8.n2.a2
%G en
%F HHA_2006_8_2_a2
Klaus Thomsen. Homotopy invariance in E-theory. Homology, homotopy, and applications, Tome 8 (2006) no. 2, pp. 29-49. doi : 10.4310/HHA.2006.v8.n2.a2. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2006.v8.n2.a2/

Cité par Sources :