Fibrations over aspherical manifolds
Homology, homotopy, and applications, Tome 8 (2006) no. 1, pp. 257-261.

Voir la notice de l'article provenant de la source International Press of Boston

Let $f\colon E \to B$ be a map between closed connected orientable manifolds. In this note, we give a necessary condition for $f$ to be a manifold fibration. In particular, we show that if $F \hookrightarrow E \stackrel{f}{\to} B$ is a fibration where $F=f^{-1}(b)$, $E$ and $B$ are closed connected triangulated orientable manifolds and $B$ is aspherical, then $f|_{E^{(n)}}\colon E^{(n)} \to B$ is surjective, where $E^{(n)}$ denotes the $n$-th skeleton of $E$ and $n=\dim B$.
DOI : 10.4310/HHA.2006.v8.n1.a9
Classification : 55M20, 55R20, 55T10, 55S35
Keywords: obstruction theory, fibrations, local coefficients, Shapiro’s Lemma
@article{HHA_2006_8_1_a9,
     author = {Daciberg Gon\c{c}alves and Peter Wong},
     title = {Fibrations over aspherical manifolds},
     journal = {Homology, homotopy, and applications},
     pages = {257--261},
     publisher = {mathdoc},
     volume = {8},
     number = {1},
     year = {2006},
     doi = {10.4310/HHA.2006.v8.n1.a9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2006.v8.n1.a9/}
}
TY  - JOUR
AU  - Daciberg Gonçalves
AU  - Peter Wong
TI  - Fibrations over aspherical manifolds
JO  - Homology, homotopy, and applications
PY  - 2006
SP  - 257
EP  - 261
VL  - 8
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2006.v8.n1.a9/
DO  - 10.4310/HHA.2006.v8.n1.a9
LA  - en
ID  - HHA_2006_8_1_a9
ER  - 
%0 Journal Article
%A Daciberg Gonçalves
%A Peter Wong
%T Fibrations over aspherical manifolds
%J Homology, homotopy, and applications
%D 2006
%P 257-261
%V 8
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2006.v8.n1.a9/
%R 10.4310/HHA.2006.v8.n1.a9
%G en
%F HHA_2006_8_1_a9
Daciberg Gonçalves; Peter Wong. Fibrations over aspherical manifolds. Homology, homotopy, and applications, Tome 8 (2006) no. 1, pp. 257-261. doi : 10.4310/HHA.2006.v8.n1.a9. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2006.v8.n1.a9/

Cité par Sources :