Toward equivariant Iwasawa theory, IV
Homology, homotopy, and applications, Tome 7 (2005) no. 3, pp. 155-171.

Voir la notice de l'article provenant de la source International Press of Boston

Let $l$ be an odd prime number and $K_{\infty}/k$ a Galois extension of totally real number fields, with $k/{\Bbb{Q}}$ and $K_{\infty}/k_{\infty}$ finite, where $k_{\infty}$ is the cyclotomic ${\Bbb{Z}}_l$-extension of $k$. In [RW2] a “main conjecture” of equivariant Iwasawa theory is formulated which for pro-$l$ groups $G_{\infty}$ is reduced in [RW3] to a property of the Iwasawa $L$-function of $K_{\infty}/k$. In this paper we extend this reduction for arbitrary $G_{\infty}$ to $l$-elementary groups $G_{\infty}=\langle s \rangle\times U$, with $\langle s \rangle$ a finite cyclic group of order prime to $l$ and $U$ a pro-$l$ group. We also give first nonabelian examples of groups $G_{\infty}$ for which the conjecture holds.
DOI : 10.4310/HHA.2005.v7.n3.a8
Classification : 11R23, 11R32, 11R37, 11R42, 11S23, 11S40
Keywords: Iwasawa theory, $l$-adic $L$-functions
@article{HHA_2005_7_3_a9,
     author = {J\"urgen Ritter and Alfred Weiss},
     title = {Toward equivariant {Iwasawa} theory, {IV}},
     journal = {Homology, homotopy, and applications},
     pages = {155--171},
     publisher = {mathdoc},
     volume = {7},
     number = {3},
     year = {2005},
     doi = {10.4310/HHA.2005.v7.n3.a8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2005.v7.n3.a8/}
}
TY  - JOUR
AU  - Jürgen Ritter
AU  - Alfred Weiss
TI  - Toward equivariant Iwasawa theory, IV
JO  - Homology, homotopy, and applications
PY  - 2005
SP  - 155
EP  - 171
VL  - 7
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2005.v7.n3.a8/
DO  - 10.4310/HHA.2005.v7.n3.a8
LA  - en
ID  - HHA_2005_7_3_a9
ER  - 
%0 Journal Article
%A Jürgen Ritter
%A Alfred Weiss
%T Toward equivariant Iwasawa theory, IV
%J Homology, homotopy, and applications
%D 2005
%P 155-171
%V 7
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2005.v7.n3.a8/
%R 10.4310/HHA.2005.v7.n3.a8
%G en
%F HHA_2005_7_3_a9
Jürgen Ritter; Alfred Weiss. Toward equivariant Iwasawa theory, IV. Homology, homotopy, and applications, Tome 7 (2005) no. 3, pp. 155-171. doi : 10.4310/HHA.2005.v7.n3.a8. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2005.v7.n3.a8/

Cité par Sources :