Computing the equivariant Euler characteristic of Zariski and étale sheaves on curves
Homology, homotopy, and applications, Tome 7 (2005) no. 3, pp. 83-98.

Voir la notice de l'article provenant de la source International Press of Boston

We prove an equivariant Grothendieck-Ogg-Shafarevich formula. This formula may be viewed as an étale analogue of well-known formulas for Zariski sheaves generalizing the classical Chevalley-Weil formula. We give a new approach to those formulas (first proved by Ellingsrud/Lønsted, Nakajima, Kani and Ksir) which can also be applied in the étale case.
DOI : 10.4310/HHA.2005.v7.n3.a6
Classification : 14F20, 14H30, 14L30
Keywords: equivariant Euler characteristic, étale cohomology, Grothendieck-Ogg-Shafarevich formula, conductor, Lefschetz formula, Riemann-Roch formula, Hurwitz formula
@article{HHA_2005_7_3_a7,
     author = {Bernhard K\"ock},
     title = {Computing the equivariant {Euler} characteristic of {Zariski} and \'etale sheaves on curves},
     journal = {Homology, homotopy, and applications},
     pages = {83--98},
     publisher = {mathdoc},
     volume = {7},
     number = {3},
     year = {2005},
     doi = {10.4310/HHA.2005.v7.n3.a6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2005.v7.n3.a6/}
}
TY  - JOUR
AU  - Bernhard Köck
TI  - Computing the equivariant Euler characteristic of Zariski and étale sheaves on curves
JO  - Homology, homotopy, and applications
PY  - 2005
SP  - 83
EP  - 98
VL  - 7
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2005.v7.n3.a6/
DO  - 10.4310/HHA.2005.v7.n3.a6
LA  - en
ID  - HHA_2005_7_3_a7
ER  - 
%0 Journal Article
%A Bernhard Köck
%T Computing the equivariant Euler characteristic of Zariski and étale sheaves on curves
%J Homology, homotopy, and applications
%D 2005
%P 83-98
%V 7
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2005.v7.n3.a6/
%R 10.4310/HHA.2005.v7.n3.a6
%G en
%F HHA_2005_7_3_a7
Bernhard Köck. Computing the equivariant Euler characteristic of Zariski and étale sheaves on curves. Homology, homotopy, and applications, Tome 7 (2005) no. 3, pp. 83-98. doi : 10.4310/HHA.2005.v7.n3.a6. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2005.v7.n3.a6/

Cité par Sources :