Higher monodromy
Homology, homotopy, and applications, Tome 7 (2005) no. 1, pp. 109-150.

Voir la notice de l'article provenant de la source International Press of Boston

For a given category $C$ and a topological space $X$, the constant stack on $X$ with stalk $C$ is the stack of locally constant sheaves with values in $C$. Its global objects are classified by their monodromy, a functor from the fundamental groupoid $Π_1(X)$ to $C$. In this paper we recall these notions from the point of view of higher category theory and then define the 2-monodromy of a locally constant stack with values in a 2-category $C$ as a 2-functor from the homotopy 2-groupoid $Π_2(X)$ to $C$. We show that 2-monodromy classifies locally constant stacks on a reasonably well-behaved space $X$. As an application, we show how to recover from this classification the cohomological version of a classical theorem of Hopf, and we extend it to the non abelian case.
DOI : 10.4310/HHA.2005.v7.n1.a7
Classification : 14A20, 18G50, 55Pxx
Keywords: monodromy representation, algebraic topology, stacks, category theory, non abelian cohomology
@article{HHA_2005_7_1_a7,
     author = {Pietro Polesello and Ingo Waschkies},
     title = {Higher monodromy},
     journal = {Homology, homotopy, and applications},
     pages = {109--150},
     publisher = {mathdoc},
     volume = {7},
     number = {1},
     year = {2005},
     doi = {10.4310/HHA.2005.v7.n1.a7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2005.v7.n1.a7/}
}
TY  - JOUR
AU  - Pietro Polesello
AU  - Ingo Waschkies
TI  - Higher monodromy
JO  - Homology, homotopy, and applications
PY  - 2005
SP  - 109
EP  - 150
VL  - 7
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2005.v7.n1.a7/
DO  - 10.4310/HHA.2005.v7.n1.a7
LA  - en
ID  - HHA_2005_7_1_a7
ER  - 
%0 Journal Article
%A Pietro Polesello
%A Ingo Waschkies
%T Higher monodromy
%J Homology, homotopy, and applications
%D 2005
%P 109-150
%V 7
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2005.v7.n1.a7/
%R 10.4310/HHA.2005.v7.n1.a7
%G en
%F HHA_2005_7_1_a7
Pietro Polesello; Ingo Waschkies. Higher monodromy. Homology, homotopy, and applications, Tome 7 (2005) no. 1, pp. 109-150. doi : 10.4310/HHA.2005.v7.n1.a7. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2005.v7.n1.a7/

Cité par Sources :