On the homotopy type of a chain algebra
Homology, homotopy, and applications, Tome 6 (2004) no. 1, pp. 109-135.

Voir la notice de l'article provenant de la source International Press of Boston

Let $R$ be a P.I.D and let $A$ be a dga over $R$. It is well-known that the graded homology modules $H_{\ast }(A)$ and $% Tor_{\ast }^{A}(R,R)$ alone do not suffice (in general) to determine the homotopy type of the dga $A$. J.H. Baues had built a more precise invariant, the “certain” exact sequence of Whitehead associated with $A.$ Whitehead had built it for CW-complexes. In this work we explore this sequence to show how it can be used to classify the homotopy types of $A$.
DOI : 10.4310/HHA.2004.v6.n1.a8
Classification : 55Q15, 55U40
Keywords: differential graded algebra, Whitehead exact sequence, Detecting functor, Homotopy type
@article{HHA_2004_6_1_a7,
     author = {Mahmoud Benkhalifa},
     title = {On the homotopy type of a chain algebra},
     journal = {Homology, homotopy, and applications},
     pages = {109--135},
     publisher = {mathdoc},
     volume = {6},
     number = {1},
     year = {2004},
     doi = {10.4310/HHA.2004.v6.n1.a8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2004.v6.n1.a8/}
}
TY  - JOUR
AU  - Mahmoud Benkhalifa
TI  - On the homotopy type of a chain algebra
JO  - Homology, homotopy, and applications
PY  - 2004
SP  - 109
EP  - 135
VL  - 6
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2004.v6.n1.a8/
DO  - 10.4310/HHA.2004.v6.n1.a8
LA  - en
ID  - HHA_2004_6_1_a7
ER  - 
%0 Journal Article
%A Mahmoud Benkhalifa
%T On the homotopy type of a chain algebra
%J Homology, homotopy, and applications
%D 2004
%P 109-135
%V 6
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2004.v6.n1.a8/
%R 10.4310/HHA.2004.v6.n1.a8
%G en
%F HHA_2004_6_1_a7
Mahmoud Benkhalifa. On the homotopy type of a chain algebra. Homology, homotopy, and applications, Tome 6 (2004) no. 1, pp. 109-135. doi : 10.4310/HHA.2004.v6.n1.a8. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2004.v6.n1.a8/

Cité par Sources :