Non-abelian cohomology via parity quasi-complexes
Homology, homotopy, and applications, Tome 6 (2004) no. 1, pp. 49-58.

Voir la notice de l'article provenant de la source International Press of Boston

The homotopy category of parity quasi-complexes is introduced. The homotopy structure is compatible with the non-abelian homology of parity quasi-complexes. Parity contracting homotopies are defined, determining the parity free resolutions in a canonical way, enabling the nonabelian bar construction. In this way, the even/odd grouping of the simplicial maps in the cocycle conditions of nonabelian cohomology is explained.
DOI : 10.4310/HHA.2004.v6.n1.a5
Classification : 18G10, 18G55, 57T30, 18G25
@article{HHA_2004_6_1_a4,
     author = {Lucian M. Ionescu},
     title = {Non-abelian cohomology via parity quasi-complexes},
     journal = {Homology, homotopy, and applications},
     pages = {49--58},
     publisher = {mathdoc},
     volume = {6},
     number = {1},
     year = {2004},
     doi = {10.4310/HHA.2004.v6.n1.a5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2004.v6.n1.a5/}
}
TY  - JOUR
AU  - Lucian M. Ionescu
TI  - Non-abelian cohomology via parity quasi-complexes
JO  - Homology, homotopy, and applications
PY  - 2004
SP  - 49
EP  - 58
VL  - 6
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2004.v6.n1.a5/
DO  - 10.4310/HHA.2004.v6.n1.a5
LA  - en
ID  - HHA_2004_6_1_a4
ER  - 
%0 Journal Article
%A Lucian M. Ionescu
%T Non-abelian cohomology via parity quasi-complexes
%J Homology, homotopy, and applications
%D 2004
%P 49-58
%V 6
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2004.v6.n1.a5/
%R 10.4310/HHA.2004.v6.n1.a5
%G en
%F HHA_2004_6_1_a4
Lucian M. Ionescu. Non-abelian cohomology via parity quasi-complexes. Homology, homotopy, and applications, Tome 6 (2004) no. 1, pp. 49-58. doi : 10.4310/HHA.2004.v6.n1.a5. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2004.v6.n1.a5/

Cité par Sources :