Equivariant covering spaces and homotopy covering spaces
Homology, homotopy, and applications, Tome 6 (2004) no. 1, pp. 473-500.

Voir la notice de l'article provenant de la source International Press of Boston

Nonequivariantly, covering spaces over a connected (locally nice) space $X$ are in one-to-one correspondence with actions of the fundamental group of $X$ on discrete sets. For nonconnected spaces we consider instead actions of the fundamental groupoid. In this paper we generalize to the equivariant case, showing that we can use either of two possible notions of action of the equivariant fundamental groupoid. We consider both equivariant covering spaces and the more general notion of equivariant homotopy covering spaces.
DOI : 10.4310/HHA.2004.v6.n1.a23
Classification : 55R91, 18B40, 22A30, 55N25, 55N91, 55R15
Keywords: covering spaces, equivariant homotopy theory
@article{HHA_2004_6_1_a22,
     author = {Steven R. Costenoble and Stefan Waner},
     title = {Equivariant covering spaces and homotopy covering spaces},
     journal = {Homology, homotopy, and applications},
     pages = {473--500},
     publisher = {mathdoc},
     volume = {6},
     number = {1},
     year = {2004},
     doi = {10.4310/HHA.2004.v6.n1.a23},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2004.v6.n1.a23/}
}
TY  - JOUR
AU  - Steven R. Costenoble
AU  - Stefan Waner
TI  - Equivariant covering spaces and homotopy covering spaces
JO  - Homology, homotopy, and applications
PY  - 2004
SP  - 473
EP  - 500
VL  - 6
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2004.v6.n1.a23/
DO  - 10.4310/HHA.2004.v6.n1.a23
LA  - en
ID  - HHA_2004_6_1_a22
ER  - 
%0 Journal Article
%A Steven R. Costenoble
%A Stefan Waner
%T Equivariant covering spaces and homotopy covering spaces
%J Homology, homotopy, and applications
%D 2004
%P 473-500
%V 6
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2004.v6.n1.a23/
%R 10.4310/HHA.2004.v6.n1.a23
%G en
%F HHA_2004_6_1_a22
Steven R. Costenoble; Stefan Waner. Equivariant covering spaces and homotopy covering spaces. Homology, homotopy, and applications, Tome 6 (2004) no. 1, pp. 473-500. doi : 10.4310/HHA.2004.v6.n1.a23. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2004.v6.n1.a23/

Cité par Sources :