The geometry of configuration spaces for closed chains in two and three dimensions
Homology, homotopy, and applications, Tome 6 (2004) no. 1, pp. 237-267.

Voir la notice de l'article provenant de la source International Press of Boston

In this note we analyze the topology of the spaces of configurations in the euclidian space $\mathbb{R}^n$ of all linearly immersed polygonal circles with either fixed lengths for the sides or one side allowed to vary. Specifically, this means that the allowed maps of a $k$-gon $\langle l_1, l_2, \dots, l_k\rangle$ where the $l_i$ are the lengths of the successive sides, are specified by an ordered $k$-tuple of points in $\mathbb{R}^n$, $P_1,~P_2, \dots, P_k$ with $d(P_i, P_{i+1}) = l_i$, $1 \le i \le k-1$ and $d(P_k, P_1) = l_k$. The most useful cases are when $n = 2$ or $3$, but there is no added complexity in doing the general case. In all dimensions, we show that the configuration spaces are manifolds built out of unions of specific products $(S^{n-1})^H\times I^{(n-1)(k-2 -H)}$, over (specific) common sub-manifolds of the same form or the boundaries of such manifolds. Once the topology is specified, it is indicated how to apply these results to motion planning problems in $\mathbb{R}^2$.
DOI : 10.4310/HHA.2004.v6.n1.a14
Classification : 55R80
Keywords: configuration spaces, linkages
@article{HHA_2004_6_1_a13,
     author = {R. James Milgram and J. C. Trinkle},
     title = {The geometry of configuration spaces for closed chains in two and three dimensions},
     journal = {Homology, homotopy, and applications},
     pages = {237--267},
     publisher = {mathdoc},
     volume = {6},
     number = {1},
     year = {2004},
     doi = {10.4310/HHA.2004.v6.n1.a14},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2004.v6.n1.a14/}
}
TY  - JOUR
AU  - R. James Milgram
AU  - J. C. Trinkle
TI  - The geometry of configuration spaces for closed chains in two and three dimensions
JO  - Homology, homotopy, and applications
PY  - 2004
SP  - 237
EP  - 267
VL  - 6
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2004.v6.n1.a14/
DO  - 10.4310/HHA.2004.v6.n1.a14
LA  - en
ID  - HHA_2004_6_1_a13
ER  - 
%0 Journal Article
%A R. James Milgram
%A J. C. Trinkle
%T The geometry of configuration spaces for closed chains in two and three dimensions
%J Homology, homotopy, and applications
%D 2004
%P 237-267
%V 6
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2004.v6.n1.a14/
%R 10.4310/HHA.2004.v6.n1.a14
%G en
%F HHA_2004_6_1_a13
R. James Milgram; J. C. Trinkle. The geometry of configuration spaces for closed chains in two and three dimensions. Homology, homotopy, and applications, Tome 6 (2004) no. 1, pp. 237-267. doi : 10.4310/HHA.2004.v6.n1.a14. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2004.v6.n1.a14/

Cité par Sources :