Operations and co-operations in Morava $E$-theory
Homology, homotopy, and applications, Tome 6 (2004) no. 1, pp. 201-236.

Voir la notice de l'article provenant de la source International Press of Boston

Let $E=E_{n}$ denote the Morava $E$-theory spectrum, and let $\Gamma$ be the Morava stabilizer group of ring spectrum isomorphisms of $E$. We revisit the isomorphism $\pi_{*}L_{K(n)}(E\smash E)\cong C(\Gamma, E_{*})$ of graded formal Hopf algebroids, and its dual isomorphism $E^{*}E\cong E_{*}[[\Gamma]]$.
DOI : 10.4310/HHA.2004.v6.n1.a13
Classification : 55N22, 55P42, 57T05
Keywords: Morava $E$-theory, Hopf algebroid, Morava stabilizer group, cohomology operations, twisted completed group ring
@article{HHA_2004_6_1_a12,
     author = {Mark Hovey},
     title = {Operations and co-operations in {Morava} $E$-theory},
     journal = {Homology, homotopy, and applications},
     pages = {201--236},
     publisher = {mathdoc},
     volume = {6},
     number = {1},
     year = {2004},
     doi = {10.4310/HHA.2004.v6.n1.a13},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2004.v6.n1.a13/}
}
TY  - JOUR
AU  - Mark Hovey
TI  - Operations and co-operations in Morava $E$-theory
JO  - Homology, homotopy, and applications
PY  - 2004
SP  - 201
EP  - 236
VL  - 6
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2004.v6.n1.a13/
DO  - 10.4310/HHA.2004.v6.n1.a13
LA  - en
ID  - HHA_2004_6_1_a12
ER  - 
%0 Journal Article
%A Mark Hovey
%T Operations and co-operations in Morava $E$-theory
%J Homology, homotopy, and applications
%D 2004
%P 201-236
%V 6
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2004.v6.n1.a13/
%R 10.4310/HHA.2004.v6.n1.a13
%G en
%F HHA_2004_6_1_a12
Mark Hovey. Operations and co-operations in Morava $E$-theory. Homology, homotopy, and applications, Tome 6 (2004) no. 1, pp. 201-236. doi : 10.4310/HHA.2004.v6.n1.a13. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2004.v6.n1.a13/

Cité par Sources :