A Thom isomorphism for infinite rank Euclidean bundles
Homology, homotopy, and applications, Tome 5 (2003) no. 1, pp. 121-159.

Voir la notice de l'article provenant de la source International Press of Boston

An equivariant Thom isomorphism theorem in operator $K$-theory is formulated and proven for infinite rank Euclidean vector bundles over finite dimensional Riemannian manifolds. The main ingredient in the argument is the construction of a non-commutative ${C^{\star}}$-algebra associated to a bundle ${\mathfrak E} \to M$, equipped with a compatible connection $\nabla$, which plays the role of the algebra of functions on the infinite dimensional total space ${\mathfrak E}$. If the base $M$ is a point, we obtain the Bott periodicity isomorphism theorem of Higson-Kasparov-Trout [19] for infinite dimensional Euclidean spaces. The construction applied to an even finite rank spin$^c$-bundle over an even-dimensional proper spin$^c$-manifold reduces to the classical Thom isomorphism in topological $K$-theory. The techniques involve non-commutative geometric functional analysis.
DOI : 10.4310/HHA.2003.v5.n1.a7
Classification : 19-xx, 46-xx, 47-xx, 55-xx, 57-xx, 58-xx
Keywords: Thom isomorphism, operator algebras, $K$-theory, vector bundles
@article{HHA_2003_5_1_a6,
     author = {Jody Trout},
     title = {A {Thom} isomorphism for infinite rank {Euclidean} bundles},
     journal = {Homology, homotopy, and applications},
     pages = {121--159},
     publisher = {mathdoc},
     volume = {5},
     number = {1},
     year = {2003},
     doi = {10.4310/HHA.2003.v5.n1.a7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2003.v5.n1.a7/}
}
TY  - JOUR
AU  - Jody Trout
TI  - A Thom isomorphism for infinite rank Euclidean bundles
JO  - Homology, homotopy, and applications
PY  - 2003
SP  - 121
EP  - 159
VL  - 5
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2003.v5.n1.a7/
DO  - 10.4310/HHA.2003.v5.n1.a7
LA  - en
ID  - HHA_2003_5_1_a6
ER  - 
%0 Journal Article
%A Jody Trout
%T A Thom isomorphism for infinite rank Euclidean bundles
%J Homology, homotopy, and applications
%D 2003
%P 121-159
%V 5
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2003.v5.n1.a7/
%R 10.4310/HHA.2003.v5.n1.a7
%G en
%F HHA_2003_5_1_a6
Jody Trout. A Thom isomorphism for infinite rank Euclidean bundles. Homology, homotopy, and applications, Tome 5 (2003) no. 1, pp. 121-159. doi : 10.4310/HHA.2003.v5.n1.a7. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2003.v5.n1.a7/

Cité par Sources :