On the derivative of the stable homotopy of mapping spaces
Homology, homotopy, and applications, Tome 5 (2003) no. 1, pp. 601-612.

Voir la notice de l'article provenant de la source International Press of Boston

Using the chain rule, we give a homotopy theoretic approach to identifying the derivative of the functor $X \mapsto Q_+(X^K)$.
DOI : 10.4310/HHA.2003.v5.n1.a21
Classification : 55P65, 18G55, 55P42, 55P91
Keywords: homotopy functor, spectrum, mapping space
@article{HHA_2003_5_1_a20,
     author = {John R. Klein},
     title = {On the derivative of the stable homotopy of mapping spaces},
     journal = {Homology, homotopy, and applications},
     pages = {601--612},
     publisher = {mathdoc},
     volume = {5},
     number = {1},
     year = {2003},
     doi = {10.4310/HHA.2003.v5.n1.a21},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2003.v5.n1.a21/}
}
TY  - JOUR
AU  - John R. Klein
TI  - On the derivative of the stable homotopy of mapping spaces
JO  - Homology, homotopy, and applications
PY  - 2003
SP  - 601
EP  - 612
VL  - 5
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2003.v5.n1.a21/
DO  - 10.4310/HHA.2003.v5.n1.a21
LA  - en
ID  - HHA_2003_5_1_a20
ER  - 
%0 Journal Article
%A John R. Klein
%T On the derivative of the stable homotopy of mapping spaces
%J Homology, homotopy, and applications
%D 2003
%P 601-612
%V 5
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2003.v5.n1.a21/
%R 10.4310/HHA.2003.v5.n1.a21
%G en
%F HHA_2003_5_1_a20
John R. Klein. On the derivative of the stable homotopy of mapping spaces. Homology, homotopy, and applications, Tome 5 (2003) no. 1, pp. 601-612. doi : 10.4310/HHA.2003.v5.n1.a21. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2003.v5.n1.a21/

Cité par Sources :