Cubical abelian groups with connections are equivalent to chain complexes
Homology, homotopy, and applications, Tome 5 (2003) no. 1, pp. 49-52.

Voir la notice de l'article provenant de la source International Press of Boston

The theorem of the title is deduced from the equivalence between crossed complexes and cubical $\omega$-groupoids with connections proved by the authors in 1981. In fact we prove the equivalence of five categories defined internally to an additive category with kernels.
DOI : 10.4310/HHA.2003.v5.n1.a2
Classification : 18D35, 18G35, 55U15
Keywords: chain complexes, cubical sets with connections, abelian group objects, crossed complexes, globular and cubical $\omega$-categories
@article{HHA_2003_5_1_a1,
     author = {Ronald Brown and Philip J. Higgins},
     title = {Cubical abelian groups with connections are equivalent to chain complexes},
     journal = {Homology, homotopy, and applications},
     pages = {49--52},
     publisher = {mathdoc},
     volume = {5},
     number = {1},
     year = {2003},
     doi = {10.4310/HHA.2003.v5.n1.a2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2003.v5.n1.a2/}
}
TY  - JOUR
AU  - Ronald Brown
AU  - Philip J. Higgins
TI  - Cubical abelian groups with connections are equivalent to chain complexes
JO  - Homology, homotopy, and applications
PY  - 2003
SP  - 49
EP  - 52
VL  - 5
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2003.v5.n1.a2/
DO  - 10.4310/HHA.2003.v5.n1.a2
LA  - en
ID  - HHA_2003_5_1_a1
ER  - 
%0 Journal Article
%A Ronald Brown
%A Philip J. Higgins
%T Cubical abelian groups with connections are equivalent to chain complexes
%J Homology, homotopy, and applications
%D 2003
%P 49-52
%V 5
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2003.v5.n1.a2/
%R 10.4310/HHA.2003.v5.n1.a2
%G en
%F HHA_2003_5_1_a1
Ronald Brown; Philip J. Higgins. Cubical abelian groups with connections are equivalent to chain complexes. Homology, homotopy, and applications, Tome 5 (2003) no. 1, pp. 49-52. doi : 10.4310/HHA.2003.v5.n1.a2. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2003.v5.n1.a2/

Cité par Sources :