The set of rational homotopy types with given cohomology algebra
Homology, homotopy, and applications, Tome 5 (2003) no. 1, pp. 423-436.

Voir la notice de l'article provenant de la source International Press of Boston

For a given commutative graded algebra $A^*$, we study the set ${\cal M}_{A^*} =$ $\{\mbox{rational homotopy type of }X \ $ $| \ H^*(X;Q)\cong A^*\}$. For example, we see that if $A^*$ is isomorphic to $H^*(S^3\vee S^5\vee S^{16};Q)$, then ${\cal M}_{A^*}$ corresponds bijectively to the orbit space $P^3(Q)/Q^*\coprod \{*\}$, where $P^3(Q)$ is the rational projective space of dimension 3 and the point $\{*\}$ indicates the formal space.
DOI : 10.4310/HHA.2003.v5.n1.a18
Classification : 55P62
Keywords: rational homotopy type, minimal algebra, k-intrinsically formal (k-I.F.)
@article{HHA_2003_5_1_a17,
     author = {Hiroo Shiga and Toshihiro Yamaguchi},
     title = {The set of rational homotopy types with given cohomology algebra},
     journal = {Homology, homotopy, and applications},
     pages = {423--436},
     publisher = {mathdoc},
     volume = {5},
     number = {1},
     year = {2003},
     doi = {10.4310/HHA.2003.v5.n1.a18},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2003.v5.n1.a18/}
}
TY  - JOUR
AU  - Hiroo Shiga
AU  - Toshihiro Yamaguchi
TI  - The set of rational homotopy types with given cohomology algebra
JO  - Homology, homotopy, and applications
PY  - 2003
SP  - 423
EP  - 436
VL  - 5
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2003.v5.n1.a18/
DO  - 10.4310/HHA.2003.v5.n1.a18
LA  - en
ID  - HHA_2003_5_1_a17
ER  - 
%0 Journal Article
%A Hiroo Shiga
%A Toshihiro Yamaguchi
%T The set of rational homotopy types with given cohomology algebra
%J Homology, homotopy, and applications
%D 2003
%P 423-436
%V 5
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2003.v5.n1.a18/
%R 10.4310/HHA.2003.v5.n1.a18
%G en
%F HHA_2003_5_1_a17
Hiroo Shiga; Toshihiro Yamaguchi. The set of rational homotopy types with given cohomology algebra. Homology, homotopy, and applications, Tome 5 (2003) no. 1, pp. 423-436. doi : 10.4310/HHA.2003.v5.n1.a18. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2003.v5.n1.a18/

Cité par Sources :