Extensions of semimodules and the Takahashi functor $Ext_{\Lambda}(C, A)$
Homology, homotopy, and applications, Tome 5 (2003) no. 1, pp. 387-406.

Voir la notice de l'article provenant de la source International Press of Boston

Let $\Lambda$ be a semiring with 1. By a Takahashi extension of a $\Lambda$-semimodule $X$ by a $\Lambda$-semimodule $Y$ we mean an extension of $X$ by $Y$ in the sense of M. Takahashi [10]. Let $A$ be an arbitrary $\Lambda$-semimodule and $C$ a $\Lambda$-semimodule which is normal in Takahashi's sense, that is, there exist a projective $\Lambda$-semimodule $P$ and a surjective $\Lambda$-homomorphism $\varepsilon : P \to C$ such that $\varepsilon$ is a cokernel of the inclusion $\mu:\operatorname{Ker}(\varepsilon)\hookrightarrow P$. In [11], following the construction of the usual satellite functors, M. Takahashi defined $\operatorname{Ext}_{\Lambda}(C,A)$ by\[ \operatorname{Ext}_{\Lambda}(C,A)=\operatorname{Coker}(\operatorname{Hom}_{\Lambda}(\mu,A)) \]and used it to characterize Takahashi extensions of normal $\Lambda$-semimodules by $\Lambda$-modules. In this paper we relate $\operatorname{Ext}_{\Lambda}(C,A)$ with other known satellite functors of the functor $\operatorname{Hom}_{\Lambda}(-,A)$.
DOI : 10.4310/HHA.2003.v5.n1.a16
Classification : 16Y60, 18E25, 18Gxx, 20M50
Keywords: semiring, semimodule, projective semimodule, normal semimodule, extension of semimodule, satellite functor
@article{HHA_2003_5_1_a15,
     author = {Alex Patchkoria},
     title = {Extensions of semimodules and the {Takahashi} functor $Ext_{\Lambda}(C, A)$},
     journal = {Homology, homotopy, and applications},
     pages = {387--406},
     publisher = {mathdoc},
     volume = {5},
     number = {1},
     year = {2003},
     doi = {10.4310/HHA.2003.v5.n1.a16},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2003.v5.n1.a16/}
}
TY  - JOUR
AU  - Alex Patchkoria
TI  - Extensions of semimodules and the Takahashi functor $Ext_{\Lambda}(C, A)$
JO  - Homology, homotopy, and applications
PY  - 2003
SP  - 387
EP  - 406
VL  - 5
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2003.v5.n1.a16/
DO  - 10.4310/HHA.2003.v5.n1.a16
LA  - en
ID  - HHA_2003_5_1_a15
ER  - 
%0 Journal Article
%A Alex Patchkoria
%T Extensions of semimodules and the Takahashi functor $Ext_{\Lambda}(C, A)$
%J Homology, homotopy, and applications
%D 2003
%P 387-406
%V 5
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2003.v5.n1.a16/
%R 10.4310/HHA.2003.v5.n1.a16
%G en
%F HHA_2003_5_1_a15
Alex Patchkoria. Extensions of semimodules and the Takahashi functor $Ext_{\Lambda}(C, A)$. Homology, homotopy, and applications, Tome 5 (2003) no. 1, pp. 387-406. doi : 10.4310/HHA.2003.v5.n1.a16. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2003.v5.n1.a16/

Cité par Sources :