Weak corestriction principle for non-abelian Galois cohomology
Homology, homotopy, and applications, Tome 5 (2003) no. 1, pp. 219-249.

Voir la notice de l'article provenant de la source International Press of Boston

We introduce the notion of (Weak) Corestriction Principle and prove some relations between the validity of this principle for various connecting maps in non-abelian Galois cohomology over fields of characteristic 0. We also prove the validity of Weak Corestriction Principle for images of coboundary maps $H^1(k,G) \to H^2(k,T)$, where $T$ is a finite commutative $k$-group of multiplicative type, $G$ is adjoint, semisimple and contains only almost simple factors of certain inner types.
DOI : 10.4310/HHA.2003.v5.n1.a10
Classification : 11Gxx, 18G50, 20G10
Keywords: corestriction maps, Norm maps, Non-abelian Galois cohomology
@article{HHA_2003_5_1_a9,
     author = {Nguy\^e\~n Qu\^o\'c Thǎ\'ng},
     title = {Weak corestriction principle for non-abelian {Galois} cohomology},
     journal = {Homology, homotopy, and applications},
     pages = {219--249},
     publisher = {mathdoc},
     volume = {5},
     number = {1},
     year = {2003},
     doi = {10.4310/HHA.2003.v5.n1.a10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2003.v5.n1.a10/}
}
TY  - JOUR
AU  - Nguyêñ Quôć Thǎńg
TI  - Weak corestriction principle for non-abelian Galois cohomology
JO  - Homology, homotopy, and applications
PY  - 2003
SP  - 219
EP  - 249
VL  - 5
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2003.v5.n1.a10/
DO  - 10.4310/HHA.2003.v5.n1.a10
LA  - en
ID  - HHA_2003_5_1_a9
ER  - 
%0 Journal Article
%A Nguyêñ Quôć Thǎńg
%T Weak corestriction principle for non-abelian Galois cohomology
%J Homology, homotopy, and applications
%D 2003
%P 219-249
%V 5
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2003.v5.n1.a10/
%R 10.4310/HHA.2003.v5.n1.a10
%G en
%F HHA_2003_5_1_a9
Nguyêñ Quôć Thǎńg. Weak corestriction principle for non-abelian Galois cohomology. Homology, homotopy, and applications, Tome 5 (2003) no. 1, pp. 219-249. doi : 10.4310/HHA.2003.v5.n1.a10. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2003.v5.n1.a10/

Cité par Sources :