A periodisation of semisimple Lie algebras
Homology, homotopy, and applications, Tome 4 (2002) no. 2, pp. 337-355.

Voir la notice de l'article provenant de la source International Press of Boston

In this text we study classical Lie algebras. We prove that a periodisation of such Lie algebras without $sl_2$-component can be presented as a free graded Lie algebra modulo quadratic relations only. Our approach will be through a Chevalley basis and our method relies on elementary tools only.
DOI : 10.4310/HHA.2002.v4.n2.a16
Classification : 17B20, 17B55, 17B67, 17B70
Keywords: Lie algebras, semisimple Lie algebras, quadratic relations, loop algebras, Chevalley basis
@article{HHA_2002_4_2_a16,
     author = {Anna Larsson},
     title = {A periodisation of semisimple {Lie} algebras},
     journal = {Homology, homotopy, and applications},
     pages = {337--355},
     publisher = {mathdoc},
     volume = {4},
     number = {2},
     year = {2002},
     doi = {10.4310/HHA.2002.v4.n2.a16},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2002.v4.n2.a16/}
}
TY  - JOUR
AU  - Anna Larsson
TI  - A periodisation of semisimple Lie algebras
JO  - Homology, homotopy, and applications
PY  - 2002
SP  - 337
EP  - 355
VL  - 4
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2002.v4.n2.a16/
DO  - 10.4310/HHA.2002.v4.n2.a16
LA  - en
ID  - HHA_2002_4_2_a16
ER  - 
%0 Journal Article
%A Anna Larsson
%T A periodisation of semisimple Lie algebras
%J Homology, homotopy, and applications
%D 2002
%P 337-355
%V 4
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2002.v4.n2.a16/
%R 10.4310/HHA.2002.v4.n2.a16
%G en
%F HHA_2002_4_2_a16
Anna Larsson. A periodisation of semisimple Lie algebras. Homology, homotopy, and applications, Tome 4 (2002) no. 2, pp. 337-355. doi : 10.4310/HHA.2002.v4.n2.a16. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2002.v4.n2.a16/

Cité par Sources :