On constructing resolutions over the polynomial
Homology, homotopy, and applications, Tome 4 (2002) no. 2, pp. 315-336.

Voir la notice de l'article provenant de la source International Press of Boston

Let $k$ be a field, and $A$ be a polynomial algebra over $k$. Let $I\subseteq A$ be an ideal. We present a novel method for computing resolutions of $A/I$ over $A$. The method is a synthesis of Gröbner basis techniques and homological perturbation theory. The examples in this paper were computed using computer algebra.
DOI : 10.4310/HHA.2002.v4.n2.a15
Classification : 13D02
Keywords: homology, homotopy, homological perturbation, resolution, polynomial ring, Gröbner basis, normal form
@article{HHA_2002_4_2_a15,
     author = {Leif Johansson and Larry Lambe and Emil Sk\"oldberg},
     title = {On constructing resolutions over the polynomial},
     journal = {Homology, homotopy, and applications},
     pages = {315--336},
     publisher = {mathdoc},
     volume = {4},
     number = {2},
     year = {2002},
     doi = {10.4310/HHA.2002.v4.n2.a15},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2002.v4.n2.a15/}
}
TY  - JOUR
AU  - Leif Johansson
AU  - Larry Lambe
AU  - Emil Sköldberg
TI  - On constructing resolutions over the polynomial
JO  - Homology, homotopy, and applications
PY  - 2002
SP  - 315
EP  - 336
VL  - 4
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2002.v4.n2.a15/
DO  - 10.4310/HHA.2002.v4.n2.a15
LA  - en
ID  - HHA_2002_4_2_a15
ER  - 
%0 Journal Article
%A Leif Johansson
%A Larry Lambe
%A Emil Sköldberg
%T On constructing resolutions over the polynomial
%J Homology, homotopy, and applications
%D 2002
%P 315-336
%V 4
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2002.v4.n2.a15/
%R 10.4310/HHA.2002.v4.n2.a15
%G en
%F HHA_2002_4_2_a15
Leif Johansson; Larry Lambe; Emil Sköldberg. On constructing resolutions over the polynomial. Homology, homotopy, and applications, Tome 4 (2002) no. 2, pp. 315-336. doi : 10.4310/HHA.2002.v4.n2.a15. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2002.v4.n2.a15/

Cité par Sources :