Growth and Lie brackets in the homotopy Lie algebra
Homology, homotopy, and applications, Tome 4 (2002) no. 2, pp. 219-225.

Voir la notice de l'article provenant de la source International Press of Boston

Let $L$ be an infinite dimensional graded Lie algebra that is either the homotopy Lie algebra $\pi_*(\Omega X)\otimes {\mathbb Q}$ for a finite $n$-dimensional CW complex $X$, or else the homotopy Lie algebra for a local noetherian commutative ring $R $ ($UL = Ext_R(I\! k,I\! k)$) in which case put $n =$ (embdim $-$ depth)$(R)$. Theorem: (i) The integers $\lambda_k = \displaystyle\sum_{q=k}^{k+n-2} \mbox{dim} L_i$ grow faster than any polynomial in $k$. (ii) For some finite sequence $x_1, \ldots , x_d$ of elements in $L$ and some $N$, any $y\in L_{\geq N}$ satisfies: some $[x_i,y] \neq 0$.
DOI : 10.4310/HHA.2002.v4.n2.a10
Classification : 16L99, 17B70, 55P35, 55P62
Keywords: finite CW complex, local ring, homotopy lie algebra, depth
@article{HHA_2002_4_2_a10,
     author = {Yves F\'elix and Stephen Halperin and Jean-Claude Thomas},
     title = {Growth and {Lie} brackets in the homotopy {Lie} algebra},
     journal = {Homology, homotopy, and applications},
     pages = {219--225},
     publisher = {mathdoc},
     volume = {4},
     number = {2},
     year = {2002},
     doi = {10.4310/HHA.2002.v4.n2.a10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2002.v4.n2.a10/}
}
TY  - JOUR
AU  - Yves Félix
AU  - Stephen Halperin
AU  - Jean-Claude Thomas
TI  - Growth and Lie brackets in the homotopy Lie algebra
JO  - Homology, homotopy, and applications
PY  - 2002
SP  - 219
EP  - 225
VL  - 4
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2002.v4.n2.a10/
DO  - 10.4310/HHA.2002.v4.n2.a10
LA  - en
ID  - HHA_2002_4_2_a10
ER  - 
%0 Journal Article
%A Yves Félix
%A Stephen Halperin
%A Jean-Claude Thomas
%T Growth and Lie brackets in the homotopy Lie algebra
%J Homology, homotopy, and applications
%D 2002
%P 219-225
%V 4
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2002.v4.n2.a10/
%R 10.4310/HHA.2002.v4.n2.a10
%G en
%F HHA_2002_4_2_a10
Yves Félix; Stephen Halperin; Jean-Claude Thomas. Growth and Lie brackets in the homotopy Lie algebra. Homology, homotopy, and applications, Tome 4 (2002) no. 2, pp. 219-225. doi : 10.4310/HHA.2002.v4.n2.a10. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2002.v4.n2.a10/

Cité par Sources :