Topology with monoidal control
Homology, homotopy, and applications, Tome 4 (2002) no. 1, pp. 213-234.

Voir la notice de l'article provenant de la source International Press of Boston

This paper defines monoidal control, which is a specialization of control by entourage as presented in [5]. It is shown that on metric spaces monoidal control generalizes bounded control, and describes continuous control. A systematic way of obtaining results from bounded control, in the sense of [1], as results of monoidal—and hence continuous—control, is developed. Especially this provides versions of the Hurewicz and Whitehead theorems with monoidal control, thus simultaneously establishing them for continuous control over metric spaces.
DOI : 10.4310/HHA.2002.v4.n1.a12
Classification : 18Exx, 55Uxx
Keywords: bounded, continuous, entourage, control, monoid, action, category, colimit, Hurewicz
@article{HHA_2002_4_1_a11,
     author = {Ren\'e Depont Christensen and Hans J{\o}rgen Munkholm},
     title = {Topology with monoidal control},
     journal = {Homology, homotopy, and applications},
     pages = {213--234},
     publisher = {mathdoc},
     volume = {4},
     number = {1},
     year = {2002},
     doi = {10.4310/HHA.2002.v4.n1.a12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2002.v4.n1.a12/}
}
TY  - JOUR
AU  - René Depont Christensen
AU  - Hans Jørgen Munkholm
TI  - Topology with monoidal control
JO  - Homology, homotopy, and applications
PY  - 2002
SP  - 213
EP  - 234
VL  - 4
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2002.v4.n1.a12/
DO  - 10.4310/HHA.2002.v4.n1.a12
LA  - en
ID  - HHA_2002_4_1_a11
ER  - 
%0 Journal Article
%A René Depont Christensen
%A Hans Jørgen Munkholm
%T Topology with monoidal control
%J Homology, homotopy, and applications
%D 2002
%P 213-234
%V 4
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2002.v4.n1.a12/
%R 10.4310/HHA.2002.v4.n1.a12
%G en
%F HHA_2002_4_1_a11
René Depont Christensen; Hans Jørgen Munkholm. Topology with monoidal control. Homology, homotopy, and applications, Tome 4 (2002) no. 1, pp. 213-234. doi : 10.4310/HHA.2002.v4.n1.a12. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2002.v4.n1.a12/

Cité par Sources :