Exact completion and representation in Abelian categories
Homology, homotopy, and applications, Tome 3 (2001) no. 3, pp. 453-466.

Voir la notice de l'article provenant de la source International Press of Boston

When the exact completion of a category with weak finite limits is a Mal’cev category, it is possible to combine the universal property of the exact completion and the universal property of the coequalizer completion. We use this fact to explain Freyd’s representation theorems in abelian and Frobenius categories.
DOI : 10.4310/HHA.2001.v3.n3.a1
Classification : 18A35, 18B15, 18E10, 18G05
Keywords: completions, Mal’cev categories, abelian categories, Frobenius categories
@article{HHA_2001_3_3_a0,
     author = {J. Rosick\'y and E. M. Vitale},
     title = {Exact completion and representation in {Abelian} categories},
     journal = {Homology, homotopy, and applications},
     pages = {453--466},
     publisher = {mathdoc},
     volume = {3},
     number = {3},
     year = {2001},
     doi = {10.4310/HHA.2001.v3.n3.a1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2001.v3.n3.a1/}
}
TY  - JOUR
AU  - J. Rosický
AU  - E. M. Vitale
TI  - Exact completion and representation in Abelian categories
JO  - Homology, homotopy, and applications
PY  - 2001
SP  - 453
EP  - 466
VL  - 3
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2001.v3.n3.a1/
DO  - 10.4310/HHA.2001.v3.n3.a1
LA  - en
ID  - HHA_2001_3_3_a0
ER  - 
%0 Journal Article
%A J. Rosický
%A E. M. Vitale
%T Exact completion and representation in Abelian categories
%J Homology, homotopy, and applications
%D 2001
%P 453-466
%V 3
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2001.v3.n3.a1/
%R 10.4310/HHA.2001.v3.n3.a1
%G en
%F HHA_2001_3_3_a0
J. Rosický; E. M. Vitale. Exact completion and representation in Abelian categories. Homology, homotopy, and applications, Tome 3 (2001) no. 3, pp. 453-466. doi : 10.4310/HHA.2001.v3.n3.a1. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2001.v3.n3.a1/

Cité par Sources :