Idempotents and Landweber exactness in brave new algebra
Homology, homotopy, and applications, Tome 3 (2001) no. 2, pp. 355-359.

Voir la notice de l'article provenant de la source International Press of Boston

We explain how idempotents in homotopy groups give rise to splittings of homotopy categories of modules over commutative $S$-algebras, and we observe that there are naturally occurring equivariant examples involving idempotents in Burnside rings. We then give a version of the Landweber exact functor theorem that applies to $MU$-modules.
DOI : 10.4310/HHA.2001.v3.n2.a4
Classification : 55N20, 55N91, 55P43
Keywords: Brown-Peterson spectrum, Landweber exact functor theorem, complex cobordism, $E_{\infty}$ ring spectrum
@article{HHA_2001_3_2_a6,
     author = {J. P. May},
     title = {Idempotents and {Landweber} exactness in brave new algebra},
     journal = {Homology, homotopy, and applications},
     pages = {355--359},
     publisher = {mathdoc},
     volume = {3},
     number = {2},
     year = {2001},
     doi = {10.4310/HHA.2001.v3.n2.a4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2001.v3.n2.a4/}
}
TY  - JOUR
AU  - J. P. May
TI  - Idempotents and Landweber exactness in brave new algebra
JO  - Homology, homotopy, and applications
PY  - 2001
SP  - 355
EP  - 359
VL  - 3
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2001.v3.n2.a4/
DO  - 10.4310/HHA.2001.v3.n2.a4
LA  - en
ID  - HHA_2001_3_2_a6
ER  - 
%0 Journal Article
%A J. P. May
%T Idempotents and Landweber exactness in brave new algebra
%J Homology, homotopy, and applications
%D 2001
%P 355-359
%V 3
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2001.v3.n2.a4/
%R 10.4310/HHA.2001.v3.n2.a4
%G en
%F HHA_2001_3_2_a6
J. P. May. Idempotents and Landweber exactness in brave new algebra. Homology, homotopy, and applications, Tome 3 (2001) no. 2, pp. 355-359. doi : 10.4310/HHA.2001.v3.n2.a4. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2001.v3.n2.a4/

Cité par Sources :