Cores of spaces, spectra, and $E_{\infty}$ ring spectra
Homology, homotopy, and applications, Tome 3 (2001) no. 2, pp. 341-354.

Voir la notice de l'article provenant de la source International Press of Boston

In a paper that has attracted little notice, Priddy showed that the Brown-Peterson spectrum at a prime $p$ can be constructed from the $p$-local sphere spectrum $S$ by successively killing its odd dimensional homotopy groups. This seems to be an isolated curiosity, but it is not. For any space or spectrum $Y$ that is $p$-local and $(n_0-1)$-connected and has $\pi_{n_0}(Y)$ cyclic, there is a $p$-local, $(n_0-1)$-connected “nuclear” CW complex or CW spectrum $X$ and a map $f: X\to Y$ that induces an isomorphism on $\pi_{n_0}$ and a monomorphism on all homotopy groups. Nuclear complexes are atomic: a self-map that induces an isomorphism on $\pi_{n_0}$ must be an equivalence. The construction of $X$ from $Y$ is neither functorial nor even unique up to equivalence, but it is there. Applied to the localization of $MU$ at $p$, the construction yields $BP$.
DOI : 10.4310/HHA.2001.v3.n2.a3
Classification : 55P15, 55P42, 55P43, 55S12
Keywords: atomic space, Brown-Peterson spectrum, localization, Einfty ring spectrum
@article{HHA_2001_3_2_a4,
     author = {P. Hu and I. Kriz and J. P. May},
     title = {Cores of spaces, spectra, and $E_{\infty}$ ring spectra},
     journal = {Homology, homotopy, and applications},
     pages = {341--354},
     publisher = {mathdoc},
     volume = {3},
     number = {2},
     year = {2001},
     doi = {10.4310/HHA.2001.v3.n2.a3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2001.v3.n2.a3/}
}
TY  - JOUR
AU  - P. Hu
AU  - I. Kriz
AU  - J. P. May
TI  - Cores of spaces, spectra, and $E_{\infty}$ ring spectra
JO  - Homology, homotopy, and applications
PY  - 2001
SP  - 341
EP  - 354
VL  - 3
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2001.v3.n2.a3/
DO  - 10.4310/HHA.2001.v3.n2.a3
LA  - en
ID  - HHA_2001_3_2_a4
ER  - 
%0 Journal Article
%A P. Hu
%A I. Kriz
%A J. P. May
%T Cores of spaces, spectra, and $E_{\infty}$ ring spectra
%J Homology, homotopy, and applications
%D 2001
%P 341-354
%V 3
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2001.v3.n2.a3/
%R 10.4310/HHA.2001.v3.n2.a3
%G en
%F HHA_2001_3_2_a4
P. Hu; I. Kriz; J. P. May. Cores of spaces, spectra, and $E_{\infty}$ ring spectra. Homology, homotopy, and applications, Tome 3 (2001) no. 2, pp. 341-354. doi : 10.4310/HHA.2001.v3.n2.a3. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2001.v3.n2.a3/

Cité par Sources :