A homotopy Lie-Rinehart resolution and classical BRST cohomology
Homology, homotopy, and applications, Tome 3 (2001) no. 1, pp. 165-192.

Voir la notice de l'article provenant de la source International Press of Boston

We use an interlaced inductive procedure reminiscent of the integration process from traditional deformation theory to construct a homotopy Lie-Rinehart resolution for the Lie-Rinehart pair which arises as an exercise in Poisson reduction in the context of the BFV construction of classical BRST cohomology. We show that the associated homotopy Rinehart algebra and the BRST algebra are isomorphic as graded commutative algebras. In the irreducible case, the two have the same cohomology.
DOI : 10.4310/HHA.2001.v3.n1.a8
Classification : 17B55
@article{HHA_2001_3_1_a8,
     author = {Lars Kjeseth},
     title = {A homotopy {Lie-Rinehart} resolution and classical {BRST} cohomology},
     journal = {Homology, homotopy, and applications},
     pages = {165--192},
     publisher = {mathdoc},
     volume = {3},
     number = {1},
     year = {2001},
     doi = {10.4310/HHA.2001.v3.n1.a8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2001.v3.n1.a8/}
}
TY  - JOUR
AU  - Lars Kjeseth
TI  - A homotopy Lie-Rinehart resolution and classical BRST cohomology
JO  - Homology, homotopy, and applications
PY  - 2001
SP  - 165
EP  - 192
VL  - 3
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2001.v3.n1.a8/
DO  - 10.4310/HHA.2001.v3.n1.a8
LA  - en
ID  - HHA_2001_3_1_a8
ER  - 
%0 Journal Article
%A Lars Kjeseth
%T A homotopy Lie-Rinehart resolution and classical BRST cohomology
%J Homology, homotopy, and applications
%D 2001
%P 165-192
%V 3
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2001.v3.n1.a8/
%R 10.4310/HHA.2001.v3.n1.a8
%G en
%F HHA_2001_3_1_a8
Lars Kjeseth. A homotopy Lie-Rinehart resolution and classical BRST cohomology. Homology, homotopy, and applications, Tome 3 (2001) no. 1, pp. 165-192. doi : 10.4310/HHA.2001.v3.n1.a8. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2001.v3.n1.a8/

Cité par Sources :