Topological $K$-theory of the integers at the prime 2
Homology, homotopy, and applications, Tome 2 (2000) no. 1, pp. 119-126.

Voir la notice de l'article provenant de la source International Press of Boston

Recent results of Voevodsky and others have effectively led to the proof of the Lichtenbaum-Quillen conjectures at the prime 2, and consequently made it possible to determine the 2-homotopy type of the $K$-theory spectra for various number rings. The basic case is that of $BGL(\mathbb{Z})$; in this note we use these results to determine the 2-local (topological) $K$-theory of the space $BGL(\mathbb{Z})$, which can be described as a completed tensor product of two quite simple components; one corresponds to a real ‘image of $J$’ space, the other to $BBSO$.
DOI : 10.4310/HHA.2000.v2.n1.a9
Classification : 19Dxx, 55N15, 55P15
Keywords: $K$-theory, general linear group of integers, Rothenberg-Steenrod spectral sequence, Bousfield localization
@article{HHA_2000_2_1_a9,
     author = {Luke Hodgkin},
     title = {Topological $K$-theory of the integers at the prime 2},
     journal = {Homology, homotopy, and applications},
     pages = {119--126},
     publisher = {mathdoc},
     volume = {2},
     number = {1},
     year = {2000},
     doi = {10.4310/HHA.2000.v2.n1.a9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2000.v2.n1.a9/}
}
TY  - JOUR
AU  - Luke Hodgkin
TI  - Topological $K$-theory of the integers at the prime 2
JO  - Homology, homotopy, and applications
PY  - 2000
SP  - 119
EP  - 126
VL  - 2
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2000.v2.n1.a9/
DO  - 10.4310/HHA.2000.v2.n1.a9
LA  - en
ID  - HHA_2000_2_1_a9
ER  - 
%0 Journal Article
%A Luke Hodgkin
%T Topological $K$-theory of the integers at the prime 2
%J Homology, homotopy, and applications
%D 2000
%P 119-126
%V 2
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2000.v2.n1.a9/
%R 10.4310/HHA.2000.v2.n1.a9
%G en
%F HHA_2000_2_1_a9
Luke Hodgkin. Topological $K$-theory of the integers at the prime 2. Homology, homotopy, and applications, Tome 2 (2000) no. 1, pp. 119-126. doi : 10.4310/HHA.2000.v2.n1.a9. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2000.v2.n1.a9/

Cité par Sources :