More about homological properties of precrossed modules
Homology, homotopy, and applications, Tome 2 (2000) no. 1, pp. 105-114.

Voir la notice de l'article provenant de la source International Press of Boston

Homology groups modulo $q$ of a precrossed $P$-module in any dimensions are defined in terms of nonabelian derived functors, where $q$ is a nonnegative integer. The Hopf formula is proved for the second homology group modulo $q$ of a precrossed $P$-module which shows that for $q=0$ our definition is a natural extension of Conduché and Ellis’ definition [CE]. Some other properties of homologies of precrossed $P$-modules are investigated.
DOI : 10.4310/HHA.2000.v2.n1.a7
Classification : 18G10, 18G50, 20J05
Keywords: precrossed module, Peiffer abelianization, homology group, nonabelian derived functor
@article{HHA_2000_2_1_a7,
     author = {Nick Inassaridze and Emzar Khmaladze},
     title = {More about homological properties of precrossed modules},
     journal = {Homology, homotopy, and applications},
     pages = {105--114},
     publisher = {mathdoc},
     volume = {2},
     number = {1},
     year = {2000},
     doi = {10.4310/HHA.2000.v2.n1.a7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2000.v2.n1.a7/}
}
TY  - JOUR
AU  - Nick Inassaridze
AU  - Emzar Khmaladze
TI  - More about homological properties of precrossed modules
JO  - Homology, homotopy, and applications
PY  - 2000
SP  - 105
EP  - 114
VL  - 2
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2000.v2.n1.a7/
DO  - 10.4310/HHA.2000.v2.n1.a7
LA  - en
ID  - HHA_2000_2_1_a7
ER  - 
%0 Journal Article
%A Nick Inassaridze
%A Emzar Khmaladze
%T More about homological properties of precrossed modules
%J Homology, homotopy, and applications
%D 2000
%P 105-114
%V 2
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2000.v2.n1.a7/
%R 10.4310/HHA.2000.v2.n1.a7
%G en
%F HHA_2000_2_1_a7
Nick Inassaridze; Emzar Khmaladze. More about homological properties of precrossed modules. Homology, homotopy, and applications, Tome 2 (2000) no. 1, pp. 105-114. doi : 10.4310/HHA.2000.v2.n1.a7. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2000.v2.n1.a7/

Cité par Sources :