$KK$-theory as the $K$-theory of $C^*$-categories
Homology, homotopy, and applications, Tome 2 (2000) no. 1, pp. 127-145.

Voir la notice de l'article provenant de la source International Press of Boston

Let complex $C^{*}$ algebras be endowed with a norm-continuous action of a fixed compact second countable group. From a separable $C^{*}$-algebra $A$ and a $\sigma $-unital $C^{*}$-algebra $B$, we construct a $C^{*}$-category $\mathrm{Rep} (A,B)$ and an isomorphism \[ \kappa :K^{i+1}(\mathrm{Rep} (A,B))\rightarrow KK^i(A,B),\;\;\;i\in \mathbb{Z}_2, \] where on the left-hand side are Karoubi's topological $K$-groups, and on the right-hand side are Kasparov’s equivariant bivariant $K$-groups.
DOI : 10.4310/HHA.2000.v2.n1.a10
Classification : 19J99, 19K35, 46L89, 46Mxx
Keywords: $K$-theory, $KK$-theory, $C^*$-category
@article{HHA_2000_2_1_a10,
     author = {Tamaz Kandelaki},
     title = {$KK$-theory as the $K$-theory of $C^*$-categories},
     journal = {Homology, homotopy, and applications},
     pages = {127--145},
     publisher = {mathdoc},
     volume = {2},
     number = {1},
     year = {2000},
     doi = {10.4310/HHA.2000.v2.n1.a10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.2000.v2.n1.a10/}
}
TY  - JOUR
AU  - Tamaz Kandelaki
TI  - $KK$-theory as the $K$-theory of $C^*$-categories
JO  - Homology, homotopy, and applications
PY  - 2000
SP  - 127
EP  - 145
VL  - 2
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.2000.v2.n1.a10/
DO  - 10.4310/HHA.2000.v2.n1.a10
LA  - en
ID  - HHA_2000_2_1_a10
ER  - 
%0 Journal Article
%A Tamaz Kandelaki
%T $KK$-theory as the $K$-theory of $C^*$-categories
%J Homology, homotopy, and applications
%D 2000
%P 127-145
%V 2
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.2000.v2.n1.a10/
%R 10.4310/HHA.2000.v2.n1.a10
%G en
%F HHA_2000_2_1_a10
Tamaz Kandelaki. $KK$-theory as the $K$-theory of $C^*$-categories. Homology, homotopy, and applications, Tome 2 (2000) no. 1, pp. 127-145. doi : 10.4310/HHA.2000.v2.n1.a10. http://geodesic.mathdoc.fr/articles/10.4310/HHA.2000.v2.n1.a10/

Cité par Sources :