$K$-theory of affine toric varieties
Homology, homotopy, and applications, Tome 1 (1999) no. 1, pp. 135-145.

Voir la notice de l'article provenant de la source International Press of Boston

This is an updated and expanded version of my preprint #68 in the $K$-theory server at Urbana (which was an abstract of my talk at Vechta conference on commutative algebra, 1994.) In section 2, two conjectures on nilpontency of the ‘monoid Frobenius action’ on the $K$-theory of toric cones and on stabilizations of the corresponding $K$-groups are stated. Both of these conjectures are higher analogues of Anderson’s conjecture and their proof would bring a rather complete understanding of $K$-theory of toric varieties/semigroup rings.
DOI : 10.4310/HHA.1999.v1.n1.a5
Classification : 19-02, 14M25
Keywords: toric varieties, projective modules, algebraic $K$-theory, monoid rings
@article{HHA_1999_1_1_a5,
     author = {Joseph Gubeladze},
     title = {$K$-theory of affine toric varieties},
     journal = {Homology, homotopy, and applications},
     pages = {135--145},
     publisher = {mathdoc},
     volume = {1},
     number = {1},
     year = {1999},
     doi = {10.4310/HHA.1999.v1.n1.a5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.1999.v1.n1.a5/}
}
TY  - JOUR
AU  - Joseph Gubeladze
TI  - $K$-theory of affine toric varieties
JO  - Homology, homotopy, and applications
PY  - 1999
SP  - 135
EP  - 145
VL  - 1
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.1999.v1.n1.a5/
DO  - 10.4310/HHA.1999.v1.n1.a5
LA  - en
ID  - HHA_1999_1_1_a5
ER  - 
%0 Journal Article
%A Joseph Gubeladze
%T $K$-theory of affine toric varieties
%J Homology, homotopy, and applications
%D 1999
%P 135-145
%V 1
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.1999.v1.n1.a5/
%R 10.4310/HHA.1999.v1.n1.a5
%G en
%F HHA_1999_1_1_a5
Joseph Gubeladze. $K$-theory of affine toric varieties. Homology, homotopy, and applications, Tome 1 (1999) no. 1, pp. 135-145. doi : 10.4310/HHA.1999.v1.n1.a5. http://geodesic.mathdoc.fr/articles/10.4310/HHA.1999.v1.n1.a5/

Cité par Sources :