On spaces of the same strong $n$-type
Homology, homotopy, and applications, Tome 1 (1999) no. 1, pp. 205-217.

Voir la notice de l'article provenant de la source International Press of Boston

Let $X$ be a connected CW complex and $[X]$ be its homotopy type. As usual, $\mbox{SNT}(X)$ denotes the pointed set of homotopy types of CW complexes $Y$ such that their $n^{th}$-Postnikov approximations $X^{(n)}$ and $Y^{(n)}$ are homotopy equivalent for all $n$. In this paper we study a particularly interesting subset of $\mbox{SNT}(X)$, denoted $\mbox{SNT}_{\pi}(X)$, of strong $n$ type; the $n^{th}$-Postnikov approximations $X^{(n)}$ and $Y^{(n)}$ are homotopy equivalent by homotopy equivalences satisfying an extra condition at the level of homotopy groups. First, we construct a CW complex $X$ such that $\mbox{SNT}_\pi(X) \neq \{ [X] \}$ and we establish a connection between the pointed set $\mbox{SNT}_{\pi}(X)$ and sub-groups of homotopy classes of self-equivalences via a certain $\displaystyle{\lim_{\leftarrow}}^1$ set. Secondly, we prove a conjecture of Arkowitz and Maruyama concerning subgroups of the group of self equivalences of a finite CW complex and we use this result to establish a characterization of simply connected CW complexes with finite dimensional rational cohomology such that $\mbox{SNT}_{\pi}(X) = \{[X]\}$.
DOI : 10.4310/HHA.1999.v1.n1.a10
Classification : 18G55, 55P10, 55P15
Keywords: derived functor, Postnikov tower, Self-equivalences, lim$^1$, Phantom map
@article{HHA_1999_1_1_a10,
     author = {Yves F\`elix and Jean-Claude Thomas},
     title = {On spaces of the same strong $n$-type},
     journal = {Homology, homotopy, and applications},
     pages = {205--217},
     publisher = {mathdoc},
     volume = {1},
     number = {1},
     year = {1999},
     doi = {10.4310/HHA.1999.v1.n1.a10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4310/HHA.1999.v1.n1.a10/}
}
TY  - JOUR
AU  - Yves Fèlix
AU  - Jean-Claude Thomas
TI  - On spaces of the same strong $n$-type
JO  - Homology, homotopy, and applications
PY  - 1999
SP  - 205
EP  - 217
VL  - 1
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4310/HHA.1999.v1.n1.a10/
DO  - 10.4310/HHA.1999.v1.n1.a10
LA  - en
ID  - HHA_1999_1_1_a10
ER  - 
%0 Journal Article
%A Yves Fèlix
%A Jean-Claude Thomas
%T On spaces of the same strong $n$-type
%J Homology, homotopy, and applications
%D 1999
%P 205-217
%V 1
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4310/HHA.1999.v1.n1.a10/
%R 10.4310/HHA.1999.v1.n1.a10
%G en
%F HHA_1999_1_1_a10
Yves Fèlix; Jean-Claude Thomas. On spaces of the same strong $n$-type. Homology, homotopy, and applications, Tome 1 (1999) no. 1, pp. 205-217. doi : 10.4310/HHA.1999.v1.n1.a10. http://geodesic.mathdoc.fr/articles/10.4310/HHA.1999.v1.n1.a10/

Cité par Sources :