A sharp quantitative version of Alexandrov's theorem via the method of moving planes
Journal of the European Mathematical Society, Tome 20 (2018) no. 2, pp. 261-299.

Voir la notice de l'article provenant de la source EMS Press

We prove the following quantitative version of the celebrated Soap Bubble Theorem of Alexandrov. Let S be a C2 closed embedded hypersurface of Rn+1, n≥1, and denote by osc(H) the oscillation of its mean curvature. We prove that there exists a positive ε, depending on n and upper bounds on the area and the C2-regularity of S, such that if osc(H)≤ε then there exist two concentric balls Bri​​ and Bre​​ such that S⊂Bre​​∖Bri​​ and re​−ri​≤Cosc(H), with C depending only on n and upper bounds on the surface area of S and the C2 regularity of S. Our approach is based on a quantitative study of the method of moving planes, and the quantitative estimate on re​−ri​ we obtain is optimal.
DOI : 10.4171/jems/766
Classification : 35-XX, 53-XX
Keywords: Alexandrov Soap Bubble Theorem, method of moving planes, stability, mean curvature, pinching
@article{JEMS_2018_20_2_a0,
     author = {Giulio Ciraolo and Luigi Vezzoni},
     title = {A sharp quantitative version of {Alexandrov's} theorem via the method of moving planes},
     journal = {Journal of the European Mathematical Society},
     pages = {261--299},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2018},
     doi = {10.4171/jems/766},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/766/}
}
TY  - JOUR
AU  - Giulio Ciraolo
AU  - Luigi Vezzoni
TI  - A sharp quantitative version of Alexandrov's theorem via the method of moving planes
JO  - Journal of the European Mathematical Society
PY  - 2018
SP  - 261
EP  - 299
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/jems/766/
DO  - 10.4171/jems/766
ID  - JEMS_2018_20_2_a0
ER  - 
%0 Journal Article
%A Giulio Ciraolo
%A Luigi Vezzoni
%T A sharp quantitative version of Alexandrov's theorem via the method of moving planes
%J Journal of the European Mathematical Society
%D 2018
%P 261-299
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/jems/766/
%R 10.4171/jems/766
%F JEMS_2018_20_2_a0
Giulio Ciraolo; Luigi Vezzoni. A sharp quantitative version of Alexandrov's theorem via the method of moving planes. Journal of the European Mathematical Society, Tome 20 (2018) no. 2, pp. 261-299. doi : 10.4171/jems/766. http://geodesic.mathdoc.fr/articles/10.4171/jems/766/

Cité par Sources :