Large character sums: Burgess's theorem and zeros of $L$-functions
Journal of the European Mathematical Society, Tome 20 (2018) no. 1, pp. 1-14.

Voir la notice de l'article provenant de la source EMS Press

We study the conjecture that ∑n≤x​χ(n)=o(x) for any primitive Dirichlet character χ modulo q with x≥qε, which is known to be true if the Riemann Hypothesis holds for L(s,χ). We show that it holds under the weaker assumption that „100%" of the zeros of L(s,χ) up to height 41​ lie on the critical line. We also establish various other consequences of having large character sums; for example, that if the conjecture holds for χ2 then it also holds for χ.
DOI : 10.4171/jems/757
Classification : 11-XX
Keywords: Bounds on character sums, zeros of Dirichlet L-functions, multiplicative functions
@article{JEMS_2018_20_1_a0,
     author = {Andrew Granville and Kannan Soundararajan},
     title = {Large character sums: {Burgess's} theorem and zeros of $L$-functions},
     journal = {Journal of the European Mathematical Society},
     pages = {1--14},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2018},
     doi = {10.4171/jems/757},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/757/}
}
TY  - JOUR
AU  - Andrew Granville
AU  - Kannan Soundararajan
TI  - Large character sums: Burgess's theorem and zeros of $L$-functions
JO  - Journal of the European Mathematical Society
PY  - 2018
SP  - 1
EP  - 14
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/jems/757/
DO  - 10.4171/jems/757
ID  - JEMS_2018_20_1_a0
ER  - 
%0 Journal Article
%A Andrew Granville
%A Kannan Soundararajan
%T Large character sums: Burgess's theorem and zeros of $L$-functions
%J Journal of the European Mathematical Society
%D 2018
%P 1-14
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/jems/757/
%R 10.4171/jems/757
%F JEMS_2018_20_1_a0
Andrew Granville; Kannan Soundararajan. Large character sums: Burgess's theorem and zeros of $L$-functions. Journal of the European Mathematical Society, Tome 20 (2018) no. 1, pp. 1-14. doi : 10.4171/jems/757. http://geodesic.mathdoc.fr/articles/10.4171/jems/757/

Cité par Sources :