A model-theoretic study of right-angled buildings
Journal of the European Mathematical Society, Tome 19 (2017) no. 10, pp. 3091-3141.

Voir la notice de l'article provenant de la source EMS Press

We study the model theory of right-angled buildings with infinite residues. For every Coxeter graph we obtain a complete theory with a natural axiomatisation, which is ω-stable and equational. Furthermore, we provide sharp lower and upper bounds for its degree of ampleness, computed exclusively in terms of the associated Coxeter graph. This generalises and provides an alternative treatment of the free pseudospace.
DOI : 10.4171/jems/736
Classification : 03-XX, 51-XX
Keywords: Model theory, ampleness, Coxeter, buildings
@article{JEMS_2017_19_10_a6,
     author = {Andreas Baudisch and Amador Martin-Pizarro and Martin Ziegler},
     title = {A model-theoretic study of right-angled buildings},
     journal = {Journal of the European Mathematical Society},
     pages = {3091--3141},
     publisher = {mathdoc},
     volume = {19},
     number = {10},
     year = {2017},
     doi = {10.4171/jems/736},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/736/}
}
TY  - JOUR
AU  - Andreas Baudisch
AU  - Amador Martin-Pizarro
AU  - Martin Ziegler
TI  - A model-theoretic study of right-angled buildings
JO  - Journal of the European Mathematical Society
PY  - 2017
SP  - 3091
EP  - 3141
VL  - 19
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/jems/736/
DO  - 10.4171/jems/736
ID  - JEMS_2017_19_10_a6
ER  - 
%0 Journal Article
%A Andreas Baudisch
%A Amador Martin-Pizarro
%A Martin Ziegler
%T A model-theoretic study of right-angled buildings
%J Journal of the European Mathematical Society
%D 2017
%P 3091-3141
%V 19
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/jems/736/
%R 10.4171/jems/736
%F JEMS_2017_19_10_a6
Andreas Baudisch; Amador Martin-Pizarro; Martin Ziegler. A model-theoretic study of right-angled buildings. Journal of the European Mathematical Society, Tome 19 (2017) no. 10, pp. 3091-3141. doi : 10.4171/jems/736. http://geodesic.mathdoc.fr/articles/10.4171/jems/736/

Cité par Sources :