Rigidity of smooth critical circle maps
Journal of the European Mathematical Society, Tome 19 (2017) no. 6, pp. 1729-1783.

Voir la notice de l'article provenant de la source EMS Press

We prove that any two C3 critical circle maps with the same irrational rotation number of bounded type and the same odd criticality are conjugate to each other by a C1+α circle diffeomorphism, for some universal α>0.
DOI : 10.4171/jems/704
Classification : 37-XX, 30-XX
Keywords: Critical circle maps, smooth rigidity, renormalization, commuting pairs.
@article{JEMS_2017_19_6_a2,
     author = {Pablo Guarino and Welington de Melo},
     title = {Rigidity of smooth critical circle maps},
     journal = {Journal of the European Mathematical Society},
     pages = {1729--1783},
     publisher = {mathdoc},
     volume = {19},
     number = {6},
     year = {2017},
     doi = {10.4171/jems/704},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/704/}
}
TY  - JOUR
AU  - Pablo Guarino
AU  - Welington de Melo
TI  - Rigidity of smooth critical circle maps
JO  - Journal of the European Mathematical Society
PY  - 2017
SP  - 1729
EP  - 1783
VL  - 19
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/jems/704/
DO  - 10.4171/jems/704
ID  - JEMS_2017_19_6_a2
ER  - 
%0 Journal Article
%A Pablo Guarino
%A Welington de Melo
%T Rigidity of smooth critical circle maps
%J Journal of the European Mathematical Society
%D 2017
%P 1729-1783
%V 19
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/jems/704/
%R 10.4171/jems/704
%F JEMS_2017_19_6_a2
Pablo Guarino; Welington de Melo. Rigidity of smooth critical circle maps. Journal of the European Mathematical Society, Tome 19 (2017) no. 6, pp. 1729-1783. doi : 10.4171/jems/704. http://geodesic.mathdoc.fr/articles/10.4171/jems/704/

Cité par Sources :