Rigidity of smooth critical circle maps
Journal of the European Mathematical Society, Tome 19 (2017) no. 6, pp. 1729-1783
Cet article a éte moissonné depuis la source EMS Press
We prove that any two C3 critical circle maps with the same irrational rotation number of bounded type and the same odd criticality are conjugate to each other by a C1+α circle diffeomorphism, for some universal α>0.
Classification :
37-XX, 30-XX
Keywords: Critical circle maps, smooth rigidity, renormalization, commuting pairs.
Keywords: Critical circle maps, smooth rigidity, renormalization, commuting pairs.
@article{JEMS_2017_19_6_a2,
author = {Pablo Guarino and Welington de Melo},
title = {Rigidity of smooth critical circle maps},
journal = {Journal of the European Mathematical Society},
pages = {1729--1783},
year = {2017},
volume = {19},
number = {6},
doi = {10.4171/jems/704},
url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/704/}
}
TY - JOUR AU - Pablo Guarino AU - Welington de Melo TI - Rigidity of smooth critical circle maps JO - Journal of the European Mathematical Society PY - 2017 SP - 1729 EP - 1783 VL - 19 IS - 6 UR - http://geodesic.mathdoc.fr/articles/10.4171/jems/704/ DO - 10.4171/jems/704 ID - JEMS_2017_19_6_a2 ER -
Pablo Guarino; Welington de Melo. Rigidity of smooth critical circle maps. Journal of the European Mathematical Society, Tome 19 (2017) no. 6, pp. 1729-1783. doi: 10.4171/jems/704
Cité par Sources :