Segre classes as integrals over polytopes
Journal of the European Mathematical Society, Tome 18 (2016) no. 12, pp. 2849-2863.

Voir la notice de l'article provenant de la source EMS Press

We express the Segre class of a monomial scheme – or, more generally, a scheme monomially supported on a set of divisors cutting out complete intersections – in terms of an integral computed over an associated body in Euclidean space. The formula is in the spirit of the classical Bernstein–Kouchnirenko theorem computing intersection numbers of equivariant divisors in a torus in terms of mixed volumes, but deals with the more refined intersection-theoretic invariants given by Segre classes, and holds in the less restrictive context of ‘r.c. monomial schemes’.
DOI : 10.4171/jems/655
Classification : 14-XX
Keywords: Segre classes, monomial ideals, Newton polyhedra
@article{JEMS_2016_18_12_a4,
     author = {Paolo Aluffi},
     title = {Segre classes as integrals over polytopes},
     journal = {Journal of the European Mathematical Society},
     pages = {2849--2863},
     publisher = {mathdoc},
     volume = {18},
     number = {12},
     year = {2016},
     doi = {10.4171/jems/655},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/655/}
}
TY  - JOUR
AU  - Paolo Aluffi
TI  - Segre classes as integrals over polytopes
JO  - Journal of the European Mathematical Society
PY  - 2016
SP  - 2849
EP  - 2863
VL  - 18
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/jems/655/
DO  - 10.4171/jems/655
ID  - JEMS_2016_18_12_a4
ER  - 
%0 Journal Article
%A Paolo Aluffi
%T Segre classes as integrals over polytopes
%J Journal of the European Mathematical Society
%D 2016
%P 2849-2863
%V 18
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/jems/655/
%R 10.4171/jems/655
%F JEMS_2016_18_12_a4
Paolo Aluffi. Segre classes as integrals over polytopes. Journal of the European Mathematical Society, Tome 18 (2016) no. 12, pp. 2849-2863. doi : 10.4171/jems/655. http://geodesic.mathdoc.fr/articles/10.4171/jems/655/

Cité par Sources :