The strong profinite genus of a finitely presented group can be infinite
Journal of the European Mathematical Society, Tome 18 (2016) no. 9, pp. 1909-1918.

Voir la notice de l'article provenant de la source EMS Press

We construct the first examples of finitely-presented, residually-finite groups Γ that contain an infinite sequence of non-isomorphic finitely-presented subgroups Pn​↪Γ such that the inclusion maps induce isomorphisms of profinite completions Pn​≅Γ.
DOI : 10.4171/jems/633
Classification : 20-XX
Keywords: Profinite completion, profinite genus, Grothendieck pairs
@article{JEMS_2016_18_9_a1,
     author = {Martin R. Bridson},
     title = {The strong profinite genus of a finitely presented group can be infinite},
     journal = {Journal of the European Mathematical Society},
     pages = {1909--1918},
     publisher = {mathdoc},
     volume = {18},
     number = {9},
     year = {2016},
     doi = {10.4171/jems/633},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/633/}
}
TY  - JOUR
AU  - Martin R. Bridson
TI  - The strong profinite genus of a finitely presented group can be infinite
JO  - Journal of the European Mathematical Society
PY  - 2016
SP  - 1909
EP  - 1918
VL  - 18
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/jems/633/
DO  - 10.4171/jems/633
ID  - JEMS_2016_18_9_a1
ER  - 
%0 Journal Article
%A Martin R. Bridson
%T The strong profinite genus of a finitely presented group can be infinite
%J Journal of the European Mathematical Society
%D 2016
%P 1909-1918
%V 18
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/jems/633/
%R 10.4171/jems/633
%F JEMS_2016_18_9_a1
Martin R. Bridson. The strong profinite genus of a finitely presented group can be infinite. Journal of the European Mathematical Society, Tome 18 (2016) no. 9, pp. 1909-1918. doi : 10.4171/jems/633. http://geodesic.mathdoc.fr/articles/10.4171/jems/633/

Cité par Sources :