The strong profinite genus of a finitely presented group can be infinite
Journal of the European Mathematical Society, Tome 18 (2016) no. 9, pp. 1909-1918
Cet article a éte moissonné depuis la source EMS Press
We construct the first examples of finitely-presented, residually-finite groups Γ that contain an infinite sequence of non-isomorphic finitely-presented subgroups Pn↪Γ such that the inclusion maps induce isomorphisms of profinite completions Pn≅Γ.
Classification :
20-XX
Keywords: Profinite completion, profinite genus, Grothendieck pairs
Keywords: Profinite completion, profinite genus, Grothendieck pairs
@article{JEMS_2016_18_9_a1,
author = {Martin R. Bridson},
title = {The strong profinite genus of a finitely presented group can be infinite},
journal = {Journal of the European Mathematical Society},
pages = {1909--1918},
year = {2016},
volume = {18},
number = {9},
doi = {10.4171/jems/633},
url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/633/}
}
TY - JOUR AU - Martin R. Bridson TI - The strong profinite genus of a finitely presented group can be infinite JO - Journal of the European Mathematical Society PY - 2016 SP - 1909 EP - 1918 VL - 18 IS - 9 UR - http://geodesic.mathdoc.fr/articles/10.4171/jems/633/ DO - 10.4171/jems/633 ID - JEMS_2016_18_9_a1 ER -
Martin R. Bridson. The strong profinite genus of a finitely presented group can be infinite. Journal of the European Mathematical Society, Tome 18 (2016) no. 9, pp. 1909-1918. doi: 10.4171/jems/633
Cité par Sources :