Rational Pontryagin classes and functor calculus
Journal of the European Mathematical Society, Tome 18 (2016) no. 8, pp. 1769-1811.

Voir la notice de l'article provenant de la source EMS Press

It is known that in the integral cohomology of BSO(2m), the square of the Euler class is the same as the Pontryagin class in degree 4m. Given that the Pontryagin classes extend rationally to the cohomology of BSTOP(2m), it is reasonable to ask whether the same relation between the Euler class and the Pontryagin class in degree 4m is still valid in the rational cohomology of BSTOP(2m). In this paper we reformulate the hypothesis as a statement in differential topology, and also in a functor calculus setting.
DOI : 10.4171/jems/629
Classification : 57-XX, 55-XX
Keywords: Pontryagin classes, smoothing theory, functor calculus
@article{JEMS_2016_18_8_a5,
     author = {Rui Reis and Michael S. Weiss},
     title = {Rational {Pontryagin} classes and functor calculus},
     journal = {Journal of the European Mathematical Society},
     pages = {1769--1811},
     publisher = {mathdoc},
     volume = {18},
     number = {8},
     year = {2016},
     doi = {10.4171/jems/629},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/629/}
}
TY  - JOUR
AU  - Rui Reis
AU  - Michael S. Weiss
TI  - Rational Pontryagin classes and functor calculus
JO  - Journal of the European Mathematical Society
PY  - 2016
SP  - 1769
EP  - 1811
VL  - 18
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/jems/629/
DO  - 10.4171/jems/629
ID  - JEMS_2016_18_8_a5
ER  - 
%0 Journal Article
%A Rui Reis
%A Michael S. Weiss
%T Rational Pontryagin classes and functor calculus
%J Journal of the European Mathematical Society
%D 2016
%P 1769-1811
%V 18
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/jems/629/
%R 10.4171/jems/629
%F JEMS_2016_18_8_a5
Rui Reis; Michael S. Weiss. Rational Pontryagin classes and functor calculus. Journal of the European Mathematical Society, Tome 18 (2016) no. 8, pp. 1769-1811. doi : 10.4171/jems/629. http://geodesic.mathdoc.fr/articles/10.4171/jems/629/

Cité par Sources :