Representation stability for syzygies of line bundles on Segre–Veronese varieties
Journal of the European Mathematical Society, Tome 18 (2016) no. 6, pp. 1201-1231.

Voir la notice de l'article provenant de la source EMS Press

The rational homology groups of packing complexes are important in algebraic geometry since they control the syzygies of line bundles on projective embeddings of products of projective spaces (Segre–Veronese varieties). These complexes are a common generalization of the multidimensional chessboard complexes and of the matching complexes of complete uniform hypergraphs, whose study has been a topic of interest in combinatorial topology. We prove that the multivariate version of representation stability, a notion recently introduced and studied by Church and Farb, holds for the homology groups of packing complexes. This allows us to deduce stability properties for the syzygies of line bundles on Segre–Veronese varieties. We provide bounds for when stabilization occurs and show that these bounds are sometimes sharp by describing the linear syzygies for a family of line bundles on Segre varieties. As a motivation for our investigation, we show in an appendix that Ein and Lazarsfeld’s conjecture on the asymptotic vanishing of syzygies of coherent sheaves on arbitrary projective varieties reduces to the case of line bundles on a product of (at most three) projective spaces.
DOI : 10.4171/jems/611
Classification : 13-XX, 05-XX, 14-XX, 55-XX
Keywords: Syzygies, representation stability, Segre varieties, Veronese varieties, chessboard complexes, matching complexes, packing complexes, asymptotic vanishing
@article{JEMS_2016_18_6_a1,
     author = {Claudiu Raicu},
     title = {Representation stability for syzygies of line bundles on {Segre{\textendash}Veronese} varieties},
     journal = {Journal of the European Mathematical Society},
     pages = {1201--1231},
     publisher = {mathdoc},
     volume = {18},
     number = {6},
     year = {2016},
     doi = {10.4171/jems/611},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/611/}
}
TY  - JOUR
AU  - Claudiu Raicu
TI  - Representation stability for syzygies of line bundles on Segre–Veronese varieties
JO  - Journal of the European Mathematical Society
PY  - 2016
SP  - 1201
EP  - 1231
VL  - 18
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/jems/611/
DO  - 10.4171/jems/611
ID  - JEMS_2016_18_6_a1
ER  - 
%0 Journal Article
%A Claudiu Raicu
%T Representation stability for syzygies of line bundles on Segre–Veronese varieties
%J Journal of the European Mathematical Society
%D 2016
%P 1201-1231
%V 18
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/jems/611/
%R 10.4171/jems/611
%F JEMS_2016_18_6_a1
Claudiu Raicu. Representation stability for syzygies of line bundles on Segre–Veronese varieties. Journal of the European Mathematical Society, Tome 18 (2016) no. 6, pp. 1201-1231. doi : 10.4171/jems/611. http://geodesic.mathdoc.fr/articles/10.4171/jems/611/

Cité par Sources :